基于PUPM的HEVC视频隐写发展进程  

Development Process of PUPM-based HEVC Video Steganography

在线阅读下载全文

作  者:于子超 于丽芳 YU Zichao;YU Lifang(School of Information Engineering,Beijing Institute of Graphic Communication,Beijing 102600,China)

机构地区:[1]北京印刷学院信息工程学院,北京102600

出  处:《北京印刷学院学报》2025年第3期22-29,共8页Journal of Beijing Institute of Graphic Communication

摘  要:隐写术是信息安全领域的一个热门研究方向。由于视频媒体的广泛使用,视频隐写术受到了研究领域的广泛关注。在视频隐写术中,HEVC编码视频中的基于预测单元划分模式(Prediction Unit Partition Mode,简称PUPM)的视频隐写术以其更高的视觉质量成为研究人员关注的热点之一。本文主要研究了基于PUPM的视频隐写术。首先,讨论了基于PUPM的隐写术的基本原理和评价标准。其次,根据不同的技术特点,将基于PUPM域的隐写分为三类:传统的PUPM隐写、基于编码的PUPM隐写和基于最小化嵌入失真框架的自适应PUPM隐写。说明了上述代表性方法的优缺点。最后,提出了基于多因素的失真函数设计、基于深度学习的PUPM隐写以及将基于PUPM的隐写从实验室应用到现实世界等三个未来的研究方向。Steganography is a popular research direction in the field of information security.Due to the widespread use of video media,video steganography has attracted extensive attention in the research field.In video steganography,the Prediction Unit Partition Mode(PUPM)based steganography in HEVC encoded videos has become one of the hot topics among researchers due to its higher visual quality.This paper mainly studies steganography based on PUPM.Firstly,it discusses the basic principles and evaluation criteria of PUPM-based steganography.Secondly,according to different technical characteristics,steganography in the PUPM domain is divided into three categories:traditional PUPM steganography,coding-based PUPM steganography,and adaptive PUPM steganography based on the minimization of embedding distortion framework.The advantages and disadvantages of the above representative methods are explained.Finally,three future research directions are proposed:the design of a distortion function based on multiple factors,PUPM steganography based on deep learning,and the application of PUPM-based steganography from the laboratory to the real world.

关 键 词:PUPM HEVC视频隐写 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象