检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨茂[1] 韩超 张薇 YANG Mao;HAN Chao;ZHANG Wei(Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education,Northeast Electric Power University,Jilin 132012,China)
机构地区:[1]东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林132012
出 处:《电力自动化设备》2025年第4期53-59,共7页Electric Power Automation Equipment
基 金:国家重点研发计划项目(2022YFB2403000)。
摘 要:针对当前短期风电集群功率预测方法难以充分提取时空特征实现高精度集群预测的问题,提出一种基于深度嵌入式图注意力聚类、改进自适应噪声完备集合经验模态分解和长短期时间序列网络的风电集群功率短期预测方法。基于地理位置信息构建图注意力网络,指导深度嵌入式图注意力聚类算法通过预报风速实现有效的集群划分,通过自适应噪声完备集合经验模态分解算法分别对每个类别的风电功率和风速进行分解;根据各分量的排列熵将分解后的风电功率序列和风速序列分别重构为随机分量、振荡分量和趋势分量;通过长短期时间序列网络模型得到预测结果。将所提方法应用于中国东北部某大规模风电集群,结果表明,所提预测方法的均方根误差、平均绝对误差和准确率分别为0.06376、0.05231和93.62%,优于对比方法,验证了所提方法的有效性。Aiming at the problem that it is difficult for the current short-term wind power cluster prediction methods to sufficiently extract spatiotemporal features to achieve high-precision cluster prediction.A shortterm power prediction method for wind power clusters is proposed based on deep attentional embedded graph attention clustering,improved complete ensemble empirical mode decomposition with adaptive noise and long-term and short-term time series network.Based on geographic location information,the graph attention network is constructed to guide deep attentional embedded graph clustering algorithms to achieve effective cluster partitioning by predicting wind speed.The improved complete ensemble empirical mode decomposition with adaptive noise algorithm is used to decompose the wind power and wind speed separately of each category.The decomposed wind power sequences and wind speed sequences based on the arrangement entropy of each component are reconstructed respectively into random components,oscillation components and trend components.The prediction results are obtained through the long-term and short-term time series network model.The proposed method is applied to a large-scale wind farm cluster in northeastern China,the results show that the root mean square error,mean absolute error and accuracy rate of the proposed prediction method are 0.06376,0.05231 and 93.62%respectively,which are superior to the comparison method,and the effectiveness of the proposed method is verified.
关 键 词:风电功率预测 图注意力网络 集群划分 深度学习 特征重构
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38