GIS+BIM工程勘察智能管理系统研发及应用  

Research and Application of Intelligent Management System for GIS+BIM Engineering Survey

在线阅读下载全文

作  者:陈浩 Chen Hao(China Railway First Survey and Design Institute Group Co.,Ltd.,Xi'an,China)

机构地区:[1]中铁第一勘察设计院集团有限公司,陕西西安

出  处:《科学技术创新》2025年第10期117-120,共4页Scientific and Technological Innovation

基  金:中国铁建股份有限公司科研计划(资助号:2023-Z03)。

摘  要:面向铁路智能勘察需求,研发GIS+BIM工程勘察智能化管理应用系统,以提升地质要素判识准确性并推动地质内在机理的研究。通过利用地表高密度、足量空间分布数据,弥补地质勘察采样稀疏、观测不足的问题,并对地表及地下多维度数据进行智能分析。系统实现了地质信息的智能提取、判别和分析,显著提升了地质要素判识的准确性。具体而言,地表高密度数据的应用有效弥补了传统地质勘察中采样稀疏和观测不足的缺陷。GIS+BIM工程勘察智能化管理应用系统通过多维度数据的智能分析,不仅提高了地质要素判识的准确性,还有力推动了地质内在机理的研究,为铁路智能勘察提供了强有力的技术支持。To address the needs of intelligent railway surveying,a GIS+BIM intelligent management application system for engineering surveys has been developed.This system aims to enhance the accuracy of geological element identification and promote research into the intrinsic mechanisms of geology.By utilizing high-density,sufficiently distributed spatial data from the surface,it compensates for the issues of sparse sampling and insufficient observation in traditional geological surveys,and conducts intelligent analysis of multi-dimensional data both on the surface and underground.The system achieves intelligent extraction,discrimination,and analysis of geological information,significantly improving the accuracy of geological element identification.Specifically,the application of high-density surface data effectively mitigates the shortcomings of sparse sampling and insufficient observation in conventional geological surveys.Through the intelligent analysis of multi-dimensional data,the GIS+BIM intelligent management application system not only enhances the accuracy of geological element identification but also strongly advances the study of geological intrinsic mechanisms,providing robust technical support for intelligent railway surveying.

关 键 词:GIS BIM 智能勘察 多维分析 

分 类 号:TP315[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象