A Survey of Recent Advances in Commonsense Knowledge Acquisition: Methods and Resources  

在线阅读下载全文

作  者:Chenhao Wang Jiachun Li Yubo Chen Kang Liu Jun Zhao 

机构地区:[1]Laboratory of Cognition and Decision Intelligence for Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China [2]School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China [3]Beijing Academy of Artificial Intelligence,Beijing 100049,China

出  处:《Machine Intelligence Research》2025年第2期201-218,共18页机器智能研究(英文版)

基  金:supported by the National Key Research and Development Program of China(No.2020AAA 0106400);the National Natural Science Foundation of China(Nos.61976211 and 62176257);supported by the Strategic Priority Research Program of Chinese Academy of Sciences,China(No.XDA27020100);the Youth Innovation Promotion Association CAS,China,and Yunnan Provincial Major Science and Technology Special Plan Projects,China(No.202202AD 080004).

摘  要:Imparting human-like commonsense to machines is a long-term goal in the artificial intelligence community.To achieve this goal,constructing large-scale commonsense knowledge resources is an important step.In recent years,due to increasing demand,commonsense knowledge has become a rapidly growing research field,resulting in a surge of new acquisition methods and corresponding resources.These advances have empowered a variety of downstream AI tasks.However,constructing large-scale commonsense knowledge resources remains an ongoing and challenging task.It is still difficult to efficiently collect large-scale,high-quality commonsense knowledge.In this paper,we systematically review recent advances in commonsense knowledge acquisition methods and resources,providing a comprehensive summary of recent research scope,the characteristics of different resources,and unsolved challenges.

关 键 词:Commonsense knowledge knowledge acquisition knowledge representation and processing knowledge resource knowledge engineering. 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象