TAL: Two-stream Adaptive Learning for Generalizable Person Re-identification  

在线阅读下载全文

作  者:Yichao Yan Junjie Li Shengcai Liao Jie Qin 

机构地区:[1]MoE Key Lab of Artificial Intelligence,AI Institute,Shanghai Jiao Tong University,Shanghai 200240,China [2]Inception Institute of Artificial Intelligence,Abu Dhabi 999041,UAE [3]College of Artificial Intelligence,Nanjing University of Aeronautics and Astronautics,the Key Laboratory of Brain-Machine Intelligence Technology,Ministry of Education,Nanjing 211106,China

出  处:《Machine Intelligence Research》2025年第2期337-351,共15页机器智能研究(英文版)

摘  要:Domain generalizable person re-identification(reid)is a challenging task in computer vision,which aims to apply a trained reid model to unseen domains.Prior works either combine the data in all the training domains to capture domain-invariant features,or adopt a mixture of experts to investigate domain-specific information.In this work,we argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of reid models.To this end,we design a novel framework,which we name two-stream adaptive learning(TAL),to simultaneously model these two kinds of information.Specifically,a domain-specific stream is proposed to capture the training domain statistics with batch normalization(BN)parameters,whereas an adaptive matching layer is designed to dynamically aggregate domain-level information.In the meantime,we design an adaptive BN layer in the domain-invariant stream to approximate the statistic of unseen domains,such that our model is capable of handling various novel scenes.These two streams work adaptively and collaboratively to learn generalizable reid features.As validated by extensive experiments,our framework can be applied to both single-source and multi-source domain generalization tasks,where the results show that our framework notably outperforms the state-of-the-art methods.

关 键 词:Person re-identification domain generalization image retrieval representation learning computer vision. 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象