面向智能电网的数据聚合隐私保护方案  

A novel privacy-preserving data aggregation scheme for smart grids

在线阅读下载全文

作  者:庞博 张凌浩 梁晖辉 常政威 刘泽伟 胡春强[2] PANG Bo;ZHANG Linghao;LIANG Huihui;CHANG Zhengwei;LIU Zewei;HU Chunqiang(Electric Power Research Institute of State Grid Sichuan Electric Power Company,Chengdu 401331,P.R.China;School of Big Data&Software Engineering,Chongqing University,Chongqing 400030,P.R.China)

机构地区:[1]国网四川省电力公司电力科学研究院,成都401331 [2]重庆大学大数据与软件学院,重庆400030

出  处:《重庆大学学报》2025年第3期38-49,共12页Journal of Chongqing University

基  金:国网四川省电力公司科技项目(SGSCDK00LYJS2200130)。

摘  要:数据聚合是智能电网通信中的一项关键技术,能够以高效节能的方式收集用户用电数据。随着智能电表的大规模部署,这引发了诸多用户隐私方面的担忧,例如对个人生活习惯的监测。提出了一种高效且保护隐私的数据聚合方案(efficient and privacy-preserving data aggregation,EPPDA)。首先,提出基于区块链的智能电网4层架构支持电力数据聚合。在架构的采集层中,改进了基础的Boneh-Goh-Nissim加密系统,使其更适合于电网隐私保护场景。在架构的平台层,利用区块链的防篡改特性对聚合数据进行有效的存储及查询。性能分析结果表明:提出的EPPDA可以满足智能电网系统的几种隐私特性。实验数据表明:EPPDA在保证数据隐私和安全的条件下降低了计算与通信成本,提高了整个方案的效率。Data aggregation is a key technology in smart grid communication,enabling efficient collection of essential data while optimizing energy usage.However,the large-scale deployment of smart meters raises significant privacy concerns,as it may expose users’lifestyle habits.To address this issue,this paper proposes an efficient and privacy-preserving data aggregation(EPPDA)scheme for IoT-enabled smart grid,leveraging smart contracts.First,a four-layer blockchain-based architecture is introduced to facilitate secure data aggregation.At the collection layer,the Boneh-Goh-Nissim system is improved to better suit privacy protection scenarios in smart grids.At the platform layer,blockchain’s tamper-proof features are utilized for secure storage and efficient querying of aggregated data.Performance analysis indicates that the proposed EPPDA satisfies key privacy requirements of smart grid systems.Finally,experimental results show that the proposed EPPDA reduces computational and communication costs while improving overall system efficiency.

关 键 词:智能电网 隐私保护 数据聚合 Boneh-Goh-Nissim加密 区块链 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象