检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李昕鹏 刘勤明[1] 倪静然 叶春明[1] 汪宇杰 Xinpeng Li;Qinming Liu;Jingran Ni;Chunming Ye;Yujie Wang(Business School,University of Shanghai for Science and Technology,Shanghai;Eastern Michigan Joint College of Engineering,Beibu Gulf University,Qinzhou Guangxi)
机构地区:[1]上海理工大学管理学院,上海 [2]北部湾大学东密歇根联合工程学院,广西钦州
出 处:《建模与仿真》2025年第1期509-524,共16页Modeling and Simulation
基 金:国家自然科学基金资助项目(71632008,71840003);上海市2021度“科技创新行动计划”宝山转型发展科技专项项目(21SQBS01404);上海理工大学科技发展项目(2020KJFZ038)。
摘 要:考虑到生鲜配送场景下消费者需求零散化、个性化和及时性的特点,本文开展了生鲜多温共配路径问题研究。首先,基于客户对生鲜配送时间是否及时准确的敏感程度,引入时间抵制度模型,构建以运输成本最小、客户时间抵制度最小为目标的生鲜多温共配路径多目标优化模型。其次,针对蜣螂优化算法的改进,设计了一种以tent混沌映射与逆向学习策略生成初始种群,在蜣螂觅食阶段引入自适应步长策略与凸透镜成像策略,滚球阶段引入曲线自适应黄金正弦策略的多策略改进的多目标蜣螂优化算法用于模型求解。最后,通过算例分析验证模型和算法的有效性,与未改进的多目标蜣螂优化算法进行对比,验证了改进多目标蜣螂优化算法性能的优越性。Considering the characteristics of decentralized,personalized,and timely consumer demand in the context of fresh produce delivery,this paper investigates the multi-temperature joint distribution path problem for fresh produce.Firstly,based on customers’sensitivity to the timeliness and accuracy of fresh produce delivery,a time resistance model is introduced.A multi-objective optimization model for the multi-temperature joint distribution path of fresh produce is constructed with the objectives of minimizing transportation costs and customer time resistance.Secondly,for the improvement of the dung beetle optimization algorithm,a multi-strategy improved multi-objective dung beetle optimization algorithm is designed.This algorithm generates an initial population using tent chaotic mapping and inverse learning strategy,introduces an adaptive step size strategy and a convex lens imaging strategy in the dung beetle foraging phase,and incorporates a curve adaptive golden sine strategy in the rolling phase for model solving.Finally,through case analysis,the effectiveness of the model and algorithm is verified.Compared with the unimproved multi-objective dung beetle optimization algorithm,the superiority of the improved multi-objective dung beetle optimization algorithm’s performance is validated.
关 键 词:多温共配 蜣螂优化算法 多目标优化模型 路径优化 生鲜物流
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171