检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐国荣 Guorong Xu(School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai)
出 处:《建模与仿真》2025年第1期1136-1145,共10页Modeling and Simulation
摘 要:视网膜疾病是当前威胁人类视觉健康的重要问题之一,其早期诊断和干预对预防视力损害具有重要意义。光学相干断层扫描作为一种无创成像技术,在视网膜疾病诊断中发挥着关键作用。本文提出了一种基于改进DenseNet的深度学习模型,用于多类视网膜OCT图像的自动分类。在OCT-C8数据集上进行实验,结果表明改进后的模型在八类视网膜疾病的分类任务中表现优异,平均准确率达到99.41%。与现有其他方法相比,本文提出的模型展现出更优的分类性能。Retinal diseases are one of the most important problems threatening human visual health,and their early diagnosis and intervention are of great significance in preventing visual impairment.Optical coherence tomography,as a non-invasive imaging technique,plays a key role in the diagnosis of retinal diseases.In this paper,a deep learning model based on improved DenseNet is proposed for the automatic classification of multi-class retinal OCT images.Experiments on the OCT-C8 dataset show that the improved model performs well in the classification task of eight retinal diseases with an average accuracy of 99.41%.Compared with other existing methods,the proposed model shows better classification performance.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200