检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王浩哲 夏莫 周亦威 Haozhe Wang;Mo Xia;Yiwei Zhou(Business School,University of Shanghai for Science and Technology,Shanghai;School of Intelligent Emergency Management,University of Shanghai for Science and Technology,Shanghai;Smart Urban Mobility Institute,University of Shanghai for Science and Technology,Shanghai)
机构地区:[1]上海理工大学管理学院,上海 [2]上海理工大学智慧应急管理学院,上海 [3]上海理工大学智慧城市交通研究院,上海
出 处:《建模与仿真》2025年第1期1156-1167,共12页Modeling and Simulation
摘 要:本文利用2021年杭州地铁的支付宝移动支付数据,通过详细的数据预处理和特征分析,构建了一个基于GCN的预测模型,旨在提高对未来一天内不同时间段的客流量预测准确性。该模型特别考虑了地理空间相关性、分布差异性以及动态分布相关性等多个维度,以便更好地理解站点间的关联性和乘客流动模式。实验结果显示,该模型在预测进站和出站客流量上的均方误差分别为2245.45和2127.09,表现优于XGBoost和LightGBM等传统机器学习模型,能为地铁运营者提供更加精准的客流量预测数据,帮助其在国庆假期等特殊时期更好地进行客流管理和资源调度。This study leverages Alipay mobile payment data from Hangzhou Metro in 2021 to construct a GCN-based prediction model through detailed data preprocessing and feature analysis.The aim is to enhance the accuracy of predicting passenger flows across different time periods within a day.The model specifically incorporates multiple dimensions such as geographical spatial correlations,distribution differences,and dynamic distribution correlations to better understand inter-station relationships and passenger movement patterns.Experimental results demonstrate that the model achieves mean squared errors of 2245.45 for entry flows and 2127.09 for exit flows,outperforming traditional machine learning models like XGBoost and LightGBM.This improved accuracy provides metro operators with more precise passenger flow predictions,aiding in effective crowd management and resource allocation during special periods such as National Day holidays.
关 键 词:地铁客流预测 图卷积神经网络 高斯核函数 JS散度 注意力机制
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49