检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄令宇 高庆文[1] 徐文凯 Huang Lingyu;Gao Qingwen;Xu Wenkai(Jiangling Motors Co.Ltd.,Nancahng 330200,China)
出 处:《专用汽车》2025年第4期52-55,共4页Special Purpose Vehicle
摘 要:针对重型柴油机颗粒物(PM)排放后处理系统对物理传感器的依赖问题,提出一种基于压差模型与原排模型的双模型协同控制策略。通过构建排气背压差与原始排放的数学模型,结合ECU实时数据融合算法,实现颗粒物浓度的动态预测与监控。实验表明,该策略在稳态和瞬态工况下可替代PM传感器的功能,满足国六排放法规要求,同时降低后处理系统成本与维护复杂度。To address the dependency of heavy-duty diesel engine particulate matter(PM)emission after-treatment systems on physical sensors,this paper proposes a dual-model collaborative control strategy based on a pressure differential model and an original emission model.By establishing mathematical models for exhaust backpressure differential and raw emissions,combined with an ECU real-time data fusion algorithm,dynamic prediction and monitoring of particulate matter concentration are achieved.Experimental results demonstrate that this strategy can replace the functionality of PM sensors under both steady-state and transient operating conditions,meeting China VI emission regulations while reducing the cost and maintenance complexity of after-treatment systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7