Enhancing Indoor Object Detection with xLSTM Attention-Driven YOLOv9 for Improved 2D-Driven 3D Object Detection  

在线阅读下载全文

作  者:Yu He Chengpeng Jin Xuesong Zhang 

机构地区:[1]School of Railway Intelligent Engineering,Dalian Jiaotong University,Dalian 116028,Liaoning,China [2]School of Faculty of Land and Resources Engineering,Kunming University of Science and Technology,Kunming 650031,Yunnan,China

出  处:《Journal of Electronic Research and Application》2025年第2期1-6,共6页电子研究与应用

摘  要:Three-dimensional(3D)object detection is crucial for applications such as robotic control and autonomous driving.While high-precision sensors like LiDAR are expensive,RGB-D sensors(e.g.,Kinect)offer a cost-effective alternative,especially for indoor environments.However,RGB-D sensors still face limitations in accuracy and depth perception.This paper proposes an enhanced method that integrates attention-driven YOLOv9 with xLSTM into the F-ConvNet framework.By improving the precision of 2D bounding boxes generated for 3D object detection,this method addresses issues in indoor environments with complex structures and occlusions.The proposed approach enhances detection accuracy and robustness by combining RGB images and depth data,offering improved indoor 3D object detection performance.

关 键 词:Deep learning Object detection Attention mechanism 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象