检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高文杰 邵叱风 GAO Wenjie;SHAO Chifeng(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
机构地区:[1]安徽理工大学计算机科学与工程学院,安徽淮南232001
出 处:《哈尔滨商业大学学报(自然科学版)》2025年第2期176-183,共8页Journal of Harbin University of Commerce:Natural Sciences Edition
基 金:国家自然科学基金(61572034);安徽高校与人工智能研究院协同创新项目(GXXT-2021-006).
摘 要:针对人脸活体检测算法易受光照强度变化影响且在跨域检测时准确率较低等问题,提出了一种基于伪负样本生成并结合光照过滤模块的多模态活体检测模型LFFAS.同时采用RGB和LBP图像作为输入,挖掘活体人脸的特征信息.构造光照过滤模块,用以消除光照变化对检测结果的干扰.通过伪负样本生成的方法,构建活体人脸的隐空间,用以防御各种未知非活体攻击.实验结果表明,LFFAS模型在OCIM跨域测试上的半错误率(HTER)分别为14.0%、15.19%、16.38%、14.01%,相较于现有主流模型具有更好的检测性能.A multimodal face detection model,LFFAS,based on pseudo-negative sample generation combined with a light filtering module,was proposed to address the issues that face vivisection algorithms were susceptible to changes in light intensity and had low accuracy in cross-domain detection.RGB and LBP images were used as inputs to explore the feature information of vivisected faces.A light filtering module was constructed to eliminate the interference of lighting changes on the detection results.At the same time,the pseudo-negative sample generation method was employed to construct the hidden space of the living face,which helped defend against various unknown non-living body attacks.Experimental results showed that the half-total error rate(HTER)of the LFFAS model in the OCIM cross-domain test was 14.0%,15.19%,16.38%,and 14.01%,respectively,outperforming existing mainstream models.
关 键 词:活体检测 数据融合 LBP算子 光照过滤 伪负样本生成 域泛化
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7