机构地区:[1]Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process,School of Chemical Engineering and Technology,Xinjiang University,Urumqi 830017,Xinjiang,China [2]Shaanxi Key Laboratory of Energy Chemical Process Intensification,School of Chemical Engineering and Technology,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China
出 处:《Chinese Journal of Catalysis》2025年第3期311-321,共11页催化学报(英文)
基 金:国家自然科学基金(22078257,U23A20112);国家重点研发计划(2023YFA1506300);陕西省秦创原“科学家+工程师”队伍建设(2023KXJ-276);陕西北元化工集团有限公司科研项目(2023413611014);陕西省青年人才支持计划;陕西省技术创新团队(2024RS-CXTD-47);中科院青年跨学科团队;高等学校学科创新引智计划(B23025);国家自然科学基金单原子催化中心(22388102);新疆维吾尔自治区自然科学基金(2024D01C262);陕西省自然科学基础研究计划(2024JC-YBQN-0071);太原理工大学清洁高效煤燃烧国家重点实验室(MJNYSKL202309).
摘 要:One-step direct production of methanol from methane and water(PMMW)under mild conditions is challenging in heterogeneous catalysis owing to the absence of highly effective catalysts.Herein,we designed a series of“Single-Atom”-“Frustrated Lewis Pair”(SA-FLP)dual active sites for the direct PMMW via density functional theory(DFT)calculations combined with a machine learning(ML)approach.The results indicate that the nine designed SA-FLP catalysts are capable of efficiently activate CH4 and H_(2)O and facilitate the coupling of OH^(*)and CH_(3)^(*)into methanol.The DFT-based microkinetic simulation(MKM)results indicate that CH_(3)OH production on Co1-FLP and Pt1-FLP catalysts can reach the turnover frequencies(TOFs)of 1.01×10^(−3)s^(-1)and 8.80×10^(−4)s^(-1),respectively,which exceed the experimentally reported values by three orders of magnitude.ML results unveil that the gradient boosted regression model with 13 simple features could give satisfactory predictions for the TOFs of CH_(3)OH production with RMSE and R^(2)of 0.009 s^(-1)and 1.00,respectively.The ML-predicted MKM results indicate that four catalysts including V_(1-),Fe_(1-),Ti_(1-),and Mn_(1)-FLP exhibit higher TOFs of CH_(3)OH production than the value that the most relevant experiments reported,indicating that the four catalysts are also promising catalysts for the PMMW.This study not only develops a simple and efficient approach for design and screening SA-FLP catalysts but also provides mechanistic insights into the direct PMMW.在温和条件下实现甲烷一步法直接转化为甲醇是多相催化领域的一项重大挑战.当前常用氧化剂如SO_(3),H_(2)O_(2)和N_(2)O虽能促进反应,但其高昂的成本限制了工业应用;而低成本氧气作为氧化剂则会导致副产物CO_(2)生成,降低甲醇的选择性.利用水作为氧化剂是一种潜在的解决方案,但在标准条件下,甲烷与水直接转化为甲醇的反应热力学受限,且现有金属掺杂分子筛催化剂产率较低.因此,亟需开发新型高效催化剂以实现甲烷与水的协同转化.本文结合密度泛函理论(DFT)计算与机器学习(ML)方法,提出并设计了“单原子-受阻路,易斯酸碱对”(SA-FLP)双活性位催化剂,为甲烷与水直接转化为甲醇提供了新的催化设计思路与理论支撑.本文设计了9种SA-FLP双活性位催化剂,系统地研究了甲烷和水在单原子(SA)和受阻路易斯酸碱对(FLP)位点的活化行为,以及甲烷和水共转化制甲醇的反应机理,并构建了微观动力学模拟模型.通过将甲醇生成的转化频率(TOF)与SA-FLP催化剂的物理化学性质关联,进一步构建了符合需求的机器学习模型,用于预测16种尚未开发的SA-FLP催化剂的甲醇生成TOF数据.DFT计算结果表明,设计的SA-FLP催化剂具有独特的双活性位点结构,能够高效地活化甲烷和水分子.其中,SA位点主要促进甲烷的C-H键活化,而FLP位点则有助于水分子的O-H键解离,距离适中的SA-FLP耦合位点则:有效促进CH_3^(*)与OH^(*)之间的C-O偶联,从而生成甲醇.微观动力学模拟结果表明,Co_(1)-FLP和Pt_(1-)FLP催化剂分别实现了1.01×10^(-3)S^(-1)和8.80×10^(-4)s^(-1)的甲醇生成TOF,高于其他7种SA-FLP催化剂2-4个数量级,并且远高于实验中报道值(7.53×10^(-7)-1.74×10^(-6)s^(-1)),展示出较好的催化活性.为加速催化剂的筛选进程,本文结合DFT计算结果和ML方法,基于13个简单描述符构建了梯度提升回归模型.结果显示,该模型对甲醇生成TOF
关 键 词:Single-atom catalyst Frustrated Lewis pair Machine learning Dual active sites Methanol synthesis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...