机构地区:[1]Key Laboratory of Eco-chemical Engineering,Ministry of Education,International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing,College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,Shandong,China [2]Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection,College of Environment and Safety Engineering,Qingdao University of Science and Technology,Qingdao 266042,Shandong,China [3]Shandong Institute of Hydrogen Energy Technology,China EV100,Jinan 250117,Shandong,China
出 处:《Chinese Journal of Catalysis》2025年第3期388-398,共11页催化学报(英文)
基 金:国家自然科学基金(52272222,52072197,52372205);山东省自然科学基金(ZR2023MB142);山东省高等学校青年创新科技支持计划(2022KJ308,2019KJC004);青岛市博士后研究人员应用研究项目(QDBSH_(2)0230102046);山东省博士后创新人才支持计划(SDBX2022025);中国博士后科学基金(2023M731858,2024T170451);泰山学者青年人才计划(tsqn201909114).
摘 要:Although the intermittent energy-driven direct seawater splitting technology provides an unparalleled approach to achieving sustainable development,the severe corrosion via aggressive Cl^(-)severely affects the stability and efficiency of the anode catalyst and limits its industrial application.Herein,a lattice Cl^(-)functioned NiFe-LDH electrode(E-NF-LDHCl or E-NF-LDHSW)is firstly constructed by a minute-level electrochemistry assisted chlorine corrosion strategy,which presents enhanced oxygen evolution reaction(OER)performance and excellent anti-Cl^(-)corrosion behavior for seawater splitting.The optimized E-NF-LDHCl and E-NF-LDHSW deliver low OER overpotential of 355 and 384 mV to reach 1 A cm^(-2)current density in the 1 mol L^(-1)KOH and 1 mol L^(-1)KOH seawater,respectively,as well as excellent stability of E-NF-LDHCl is maintained at 1 A cm-2 for 400 h in the 1 mol L^(-1)KOH and 1 mol L^(-1)KOH+0.5 mol L^(-1)NaCl.MD(molecular dynamics)simulation and DFT(density functional theory)calculation confirmed that strong common-ion repulsion effect in IHP region repels free Cl^(-),forming high spin polarization centers and more single electrons to enhance the intrinsic activity of OER.电化学水分解技术,特别是利用可再生能源(如光伏电站、风力发电或潮汐能)驱动的电化学水分解,被视为未来大规模生产“绿色”且低成本氢燃料的途径,以有效应对日益严峻的能源危机和环境问题.鉴于海水占地球总水量的97%,几乎可视为无穷无尽的资源.因此,直接海水电解技术的发展已成为科学界的研究热点.然而,由于海水成分复杂(Cl^(-):~0.55 mol L^(-1),Na^(+):~0.48 mol L^(-1),Mg+:~0.05 mol L^(-1)等)以及存在竞争的阳极析氯反应(CER),商业贵金属基催化剂(如RuO_(2)或IrO_(2))的稳定性和大电流密度下的析氧反应(OER)性能仍不理想,这阻碍了其工业化进程.因此,开发低成本、稳定且能在工业级安培电流下高效工作的海水分解催化剂,成为该领域亟待解决的重大挑战.本文提出了电化学辅助氯离子腐蚀策略,并在镍铁泡沫上构建了具有增强活性和稳定性的晶格氯离子功能化Ni/Fe-LDH阵列(E-NF-LDHCl).该策略不仅具有超快的合成速率(仅需数分钟),还展现出较好的抗氯离子腐蚀性能,这主要得益于晶格氯离子的同离子排斥效应.此外,将氯离子引入镍/铁氢氧化物中可以产生缺陷并调节Ni/Fe的自旋状态,从而增强本征活性并暴露更多可获得的活性中心,进而实现卓越的OER性能.因此,优化的E-NF-LDHCl在1 mol L^(-1)KOH中以355 mV的低OER过电位即可达到1 A cm^(-2)的电流密度,同时在1 mol L^(-1)KOH和1 mol L^(-1)KOH+0.5 mol L^(-1)NaCl溶液中均能保持400 h的稳定性.同时,通过相同的方法以海水替代0.5 mol L^(-1)NaCl制备的E-NF-LDHSW,在1 mol L^(-1)KOH海水中达到1 A cm^(-2)的OER电流密度,仅需要384 mV过电位.通过将E-NF-LDHSW与商用Pt/C催化剂匹配,构建了一个高效的电解槽(Pt-C/NFF||E-NF-LDHSW),在1 mol L^(-1)KOH海水电解质中仅需1.637 V即可达到100 mA cm^(-2)的电流密度,比商用两电极电解槽(Pt-C/NFF||RuO_(2)/NFF)低172 mV.分子动力学模拟和实验证明了
关 键 词:Layered double hydroxides Oxygen evolution reaction Seawater splitting Anti-Cl-corrosion High spin polarization
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...