机构地区:[1]Institute of Biomass Engineering,Key Laboratory for Biobased Materials and Energy of Ministry of Education,College of Materials and Energy,South China Agricultural University,Guangzhou 510642,Guangdong,China [2]College of Material and Chemical Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,Henan,China [3]Hubei Key Lab Low Dimens Optoelect Mat&Devices,Hubei University of Arts and Science,Xiangyang 441053,Hubei,China [4]State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China
出 处:《Chinese Journal of Catalysis》2025年第3期431-443,共13页催化学报(英文)
基 金:国家自然科学基金(22378148,52472110,2230082074);广东省自然科学基金(2024A1515012433).
摘 要:We have developed a novel S-scheme heterojunction photocatalyst for the photocatalytic production of hydrogen peroxide(H_(2)O_(2))via a two-electron(2e^(-))oxygen reduction reaction.This S-scheme heterojunction Tph-Dha-COF@Nb_(2)C was fabricated via the in-situ solvothermal growth of Tph-Dha-COF nanostructures on amino-functionalized Nb_(2)C MXene nanoflakes(Nb_(2)C-NH_(2)).The integration of Nb_(2)C significantly extended the visible light absorption of Tph-Dha-COF into the near-infrared region for photocatalytic H_(2)O_(2) production.The Tph-Dha-COF@Nb_(2)C composite demonstrated efficient charge separation,rapid electron transfer,and enhanced oxygen adsorption.Consequently,the Tph-Dha-COF@Nb_(2)C heterojunction exhibited a high H_(2)O_(2) production rate of 1833μmol g^(-1) h^(-1) without sacrificial agents.In-situ Fourier transformed infrared spectroscopy and density functional theory calculations revealed the photocatalytic H_(2)O_(2) production mechanism.The generated H_(2)O_(2) demonstrated enhanced antibacterial activity.This work presents the first application of Nb_(2)C in the photocatalytic synthesis of H_(2)O_(2) and provides a novel strategy for constructing COF-based heterojunctions for photocatalytic H_(2)O_(2) generation and wastewater treatment.过氧化氢(H_(2)O_(2))作为一种重要的工业化学氧化剂,广泛应用于水处理、化学合成、医疗领域、纺织漂白、消毒以及燃料电池等领域.然而,目前工业上主要采用的蒽醌氧化法合成H_(2)O_(2),尽管工艺成熟,但仍存在能耗高、副产物多、后续纯化复杂等问题.基于此,在纯水中通过光催化的两电子氧还原反应(2e^(-)ORR)制备H_(2)O_(2)被视为一种绿色、节能且安全的策略.然而,该体系的实际应用受到太阳能光动力学缓慢、选择性不足及光能利用效率低等限制.因此,我们前期设计了一种新型二维(2D)卟啉基共价有机框架(Tph-Dha-COF)与Nb_(2)C MXene纳米片组装的S型异质结光催化剂.该催化剂通过2e^(-)ORR实现了高效光催化合成H_(2)O_(2),并同时利用原位生成的H_(2)O_(2)实现了细菌的高效灭活.尽管异质结的构建已被证明是提升COF材料光催化性能的有效策略,但基于Nb_(2)C的COF光催化剂在H_(2)O_(2)光催化合成中的研究仍较为少见.本文首先通过氨基化处理Nb_(2)C MXene制备了Nb_(2)C-NH_(2),随后采用溶剂热法以Tph和Dha为前驱体,在Nb_(2)C-NH_(2)表面原位合成了S型异质结光催化剂(Tph-Dha-COF@Nb_(2)C).通过X射线衍射、傅里叶变换红外光谱、高分辨透射电子显微镜及紫外光电子能谱等表征手段,证实了Tph-Dha-COF@Nb_(2)C异质结的成功构筑.同时,结果表明该异质结在紫外-可见光谱范围内具有良好的光吸收性能,显著增强了光生电子-空穴对的分离与迁移效率,并且具备较大的比表面积.通过紫外-可见分光光度法评估了Nb_(2)C-NH_(2),Tph-Dha-COF及Tph-Dha-COF@Nb_(2)C的光催化活性.在可见光照射下,Tph-Dha-COF@Nb_(2)C的H_(2)O_(2)产率达1833μmol g^(-1)h^(-1),显著高于Tph-Dha-COF和Nb_(2)C-NH_(2.)此外,在无牺牲剂条件下,太阳能转化效率达到0.345%,明显高于Tph-Dha-COF(0.226%)和Nb_(2)C-NH_(2)(0.051%).进一步结合原位FT-IR谱与密度泛函理论计算,揭示了光催
关 键 词:Photocatalysis H_(2)O_(2) Covalent organic framework Nb2C MXene S-scheme heterojunction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...