Stability Analysis of an Epidemic Predator-Prey Model with Prey Dispersal and Holling Type-Ⅱ Functional Response  

在线阅读下载全文

作  者:Lingshu WANG Mei ZHANG Ya-nan ZHANG 

机构地区:[1]School of Statistics and Mathematics,Hebei University of Economics&Business,Hebei 050061,P.R.China

出  处:《Journal of Mathematical Research with Applications》2025年第2期179-194,共16页数学研究及应用(英文版)

基  金:Supported by the Social Science Foundation of Hebei Province(Grant No.HB23TJ003);the Science Research Project of Hebei Education Department(Grant No.BJK2024197)。

摘  要:This paper examines an epidemic predator-prey model with prey dispersal and Holling type-II functional response. In this model, it is assumed that the predator population suffers a transmissible disease. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the coexistence equilibrium is addressed. Using Lyapunov functionals and LaSalle's invariance principle, we obtained the sufficient conditions for the global stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the coexistence equilibrium, respectively. The paper also includes numerical simulations to illustrate the analytical results.

关 键 词:predator-prey model dispersal Holling type-II functional response Hopf bifurcation stability 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象