检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lingshu WANG Mei ZHANG Ya-nan ZHANG
出 处:《Journal of Mathematical Research with Applications》2025年第2期179-194,共16页数学研究及应用(英文版)
基 金:Supported by the Social Science Foundation of Hebei Province(Grant No.HB23TJ003);the Science Research Project of Hebei Education Department(Grant No.BJK2024197)。
摘 要:This paper examines an epidemic predator-prey model with prey dispersal and Holling type-II functional response. In this model, it is assumed that the predator population suffers a transmissible disease. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the coexistence equilibrium is addressed. Using Lyapunov functionals and LaSalle's invariance principle, we obtained the sufficient conditions for the global stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the coexistence equilibrium, respectively. The paper also includes numerical simulations to illustrate the analytical results.
关 键 词:predator-prey model dispersal Holling type-II functional response Hopf bifurcation stability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15