检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭鹤凡 刘子豪 GUO Hefan;LIU Zihao(National Radio Monitoring Center Testing Center,Beijing 100041,China)
机构地区:[1]国家无线电监测中心检测中心,北京100041
出 处:《微处理机》2025年第2期37-43,共7页Microprocessors
摘 要:针对无线电监测中多径衰落导致干扰信号强度波动、定位准确率下降的问题,提出一种基于无线传感器网络的干扰源定位方法。采用区域分割聚类法确定干扰源数量并划分监测区域;利用传感器节点采集信号强度、频率分布及相关性系数,结合时间戳信息计算信号传输距离;通过实数编码和交叉重组优化传感器节点种群,求解适应度函数以获得最优定位路径,有效规避多径效应区域。实验结果表明,本方法平均定位误差较空地协同法和三维显示法分别降低11.1%和9.6%,定位速度提升34.4%和47.3%,干扰源识别率达90%以上,显著提高了复杂环境下的无线电干扰源定位精度与效率。To address the issue of multipath fading in radio monitoring,which causes signal strength fluctuations and reduces localization accuracy,this paper proposes an interference source localization method based on a wireless sensor network.The method first employs regional segmentation clustering to determine the number of interference sources and divide the monitoring area.Sensor nodes are then used to collect signal strength,frequency distribution,and correlation coefficients,while time-stamp information is utilized to calculate signal transmission distances.Finally,real-number encoding and crossover recombination optimize the sensor node population,solving the fitness function to obtain the optimal localization path and effectively avoid severe multipath effect regions.Experimental results demonstrate that the proposed method reduces average localization errors by 11.1%and 9.6%compared to the air-ground cooperative and 3D display methods,respectively,while improving localization speed by 34.4%and 47.3%.Additionally,it achieves an interference source recognition rate exceeding 90%,significantly enhancing localization accuracy and efficiency in complex environments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170