Risk-Sensitive Linear-Quadratic Mean-Field Games:Asymptotic Solvability and Decentralized O(1/N)-Nash Equilibria In honour of the 80th birthday of Professor Peter Caines  

在线阅读下载全文

作  者:WANG Yu HUANG Minyi 

机构地区:[1]School of Control Science and Engineering,Shandong University,Jinan 250061,China [2]School of Mathematics and Statistics,Carleton University,Ottawa K1S 5B6,Canada

出  处:《Journal of Systems Science & Complexity》2025年第1期436-459,共24页系统科学与复杂性学报(英文版)

基  金:supported by Natural Sciences and Engineering Research Council(NSERC)of Canada.

摘  要:This paper considers risk-sensitive linear-quadratic mean-field games.By the so-called direct approach via dynamic programming,the authors determine the feedback Nash equilibrium in an N-player game.Subsequently,the authors design a set of decentralized strategies by passing to the mean-field limit.The authors prove that the set of decentralized strategies constitutes an O(1/N)-Nash equilibrium when applied by the N players,and hence obtain so far the tightest equilibrium error bounds for this class of models.

关 键 词:Asymptotic Nash equilibria decentralized strategies linear-quadratic mean-field games risk-sensitive costs 

分 类 号:O225[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象