检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵辉 侯旭涛 宋龙 徐可 沙建军 陈宗阳 ZHAO Hui;HOU Xutao;SONG Long;XU Ke;SHA Jianjun;CHEN Zongyang(Navigation Business Unit,Tianjin Zhongwei Aerospace Data System Technology Co.,Ltd.,Tianjin 300450,China;Navigation Business Unit,ChinaSpace Star Technology Co.,Ltd.,Beijing 100086,China;Beijing Aerospace Xinli Technology Co.,Ltd.,Beijing 100039,China;Qingdao Innovation and Development Base,Harbin Engineering University,Qingdao,Shandong 266600,China)
机构地区:[1]天津航天中为数据系统科技有限公司导航事业部,天津300450 [2]航天恒星科技有限公司导航事业部,北京100086 [3]北京航天新立科技有限公司,北京100039 [4]哈尔滨工程大学青岛创新发展基地,山东青岛266600
出 处:《计算机工程与应用》2025年第8期239-249,共11页Computer Engineering and Applications
摘 要:提出一种涂层表面缺陷检测方法,解决涂层表面缺陷嵌入式检测过程中的检测精度低、速度慢以及对硬件配置要求高等难题。YOLOv4-tiny-SR中使用了新模型块DSRBlock,该模型块的局部结构能够在保证检测精度的同时大幅降低内存消耗并提升检测速度;提出几何平均聚类方法,将聚类中心的更新方式由算术平均转换为几何平均,以避免聚类中心向大目标框偏移;同时针对难检测样本,设计包围盒聚焦损失函数,以增大网络对其学习强度,改善检测效果。基于涂层表面缺陷实测数据的比对实验结果显示,该方法与其他方法相比在参数量、模型大小、检测速度及精度上均具有明显优势,其中与目前主流的YOLOv4-tiny相比,参数量降低51.82%,模型大小减小46%,速度提升39.47%,精度也提升了1.25个百分点。该方法检测速度更快、检测精度更高、内存消耗更小,在面向工业应用的嵌入式设备上实时检测表面缺陷实用价值高,可向相关领域推广应用。A detection method for coating surface defects is proposed to solve the problems of low detection accuracy,slow speed and high requirements for hardware configuration in the process of coating surface defect embedded detection.The YOLOv4-tiny-SR uses a new model block DSRBlock.The local structure of the model block can greatly reduce memory consumption and increase detection speed while ensuring detection accuracy.A geometric average clustering method is proposed,which converts the update method of cluster centers from arithmetic average to geometric average to avoid the deviation of cluster centers to the large target frame.At the same time,for difficult-to-detect samples,a hard sample loss function is designed to increase the learning intensity of the network and improve the detection effect.The comparison experiment results based on the measured data of coating surface defects show that the method in this paper has obvious advantages compared with other methods in terms of parameter quantity,model size,detection speed and accuracy.Compared with the current mainstream YOLOv4-tiny,the parameter amount is reduced by 51.82%,the model size is reduced by 46%,the speed is increased by 39.47%,and the accuracy is also increased by 1.25 percentage points.The method in this paper has faster detection speed,higher detection accuracy,and less memory consumption,it has high practical value for real-time detection of surface defects on embedded devices for industrial applications,and can be popularized and applied to related fields.
关 键 词:涂层表面缺陷 YOLOv4-tiny-SR 几何平均聚类 包围盒聚焦损失
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222