检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王子龙 Wang Zilong(Suzhou Building Construction Quality Inspection&Test Center Co.,Ltd.,Suzhou 215000,China)
机构地区:[1]苏州市建设工程质量检测中心有限公司,苏州215000
出 处:《土木建筑工程信息技术》2025年第2期14-18,共5页Journal of Information Technology in Civil Engineering and Architecture
基 金:江苏省“双创博士”人才项目(编号:JSSCBS20230927);江苏省建设系统科技项目(编号:2024ZD116)。
摘 要:基于数据驱动的有监督结构健康监测方法,需要收集结构各种损伤状态下的监测数据作为数学模型或人工神经网络的训练数据。为克服有监督方法需要大量有标记训练数据的现实难点,本文首次提出一种新型数据驱动模式的建筑结构健康监测方法。该方法只使用在结构健康状态下采集到的振动数据用以训练一个卷积自编码器,训练过的卷积自编码器可以很好地重建来自相同结构健康状态下获取的测试数据。对于在结构损伤状态下获取的测试数据,在其数据重建过程中会产生一定程度的数据重建损失。实验建立的多层结构数学模型验证了该方法的有效性,同时,不同结构损伤状态下的测试数据对应不同程度的数据重建损失。本文提出的新型结构健康监测方法可以用来准确并及时监测建筑物可能出现的结构损伤。Data-driven based supervised structural health monitoring methods require to collect monitoring data for various damage states of structures as training data for mathematical models or artificial neural networks.To overcome the practical difficulty of requiring a large amount of labeled training data for supervised methods,this paper proposes a novel data-driven building structural health monitoring method.This method only uses vibration data collected from the healthy state of a structure to train a convolutional autoencoder,and the trained convolutional autoencoder can reconstruct the test data obtained from the same healthy state of the structure very well.For the test data obtained from the structural damage states,certain degrees of data reconstruction loss will occur in the data reconstruction process.The experimental multi-layer structure mathematical model verifies the effectiveness of the method,and the test data from different damage states of the structure correspond to different degrees of data reconstruction loss.The novel structural health monitoring method proposed in this paper can be used to accurately and timely monitor the possible structural damage of buildings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7