一种基于泊松重建的三维地质面推演算法  

An Algorithm for Three-dimensional Geological Surface Extrapolation Based on Poisson Reconstruction

在线阅读下载全文

作  者:张可军 赵龙[1] 罗永亮[1] ZHANG Kejun;ZHAO Long;LUO Yongliang(China Railway Eryuan Engineering Group Co.,Ltd.,Chengdu 610031,China)

机构地区:[1]中铁二院工程集团有限责任公司,成都610031

出  处:《高速铁路技术》2025年第2期15-21,共7页High Speed Railway Technology

摘  要:三维地质面的生成是地质建模的关键,通常需要通过钻孔、物探、勘探等资料生成地质面,这不可避免地耗费大量人力和物力。本文提出了一种基于产状推演的三维地质面生成算法,在缺少钻孔和物探资料的情况下,也能准确生成三维地质面。该算法首先利用产状推算出地质模型的大致走向,生成大量点云及其法向量;然后,利用泊松重建方法对点云进行全局重建,生成连续的三维地质表面。与传统的插值方法相比,泊松重建能够更好地处理不规则和稀疏的数据分布,提高模型的精度。研究结果表明,该算法在复杂地质条件下具有较高的适用性,可有效支撑铁路选线、地质勘探和资源评估等领域的应用。The generation of three-dimensional geological surfaces is crucial for geological modeling and typically requires data from drilling,geophysical exploration,and surveys,which inevitably consumes substantial manpower and resources.This paper proposed a three-dimensional geological surface generation algorithm based on structural attitude extrapolation,capable of accurately generating three-dimensional geological surfaces even in the absence of drilling and geophysical data.The algorithm first utilized geological attitudes to estimate the general trend of the geological model,generating a large number of point clouds and their normal vectors.Then,it employed the Poisson reconstruction method for global reconstruction of the point clouds,producing continuous three-dimensional geological surfaces.Compared with traditional interpolation methods,Poisson reconstruction better handles irregular and sparse data distributions,thus enhancing the accuracy of the model.Study results demonstrate that the algorithm has high applicability under complex geological conditions and can effectively support applications in railway route selection,geological exploration,and resource evaluation.

关 键 词:三维地质建模 泊松重建 地质面推演 点云数据处理 

分 类 号:U212.4[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象