激光功率对316L/Al_(2)O_(3)熔覆层耐磨耐蚀性能的影响  

Effect of Laser Power on the Wear and Corrosion Resistance of 316L/Al2O3 Cladding Layers

在线阅读下载全文

作  者:冯玉坤 董会[1,2] 张永杰[1,2] 李鹏宇 张三齐 杨紫辰 FENG Yukun;DONG Hui;ZHANG Yongjie;LI Pengyu;ZHANG Sanqi;YANG Zichen(School of Material Science and Engineering,Xi'an Shiyou University,Xi'an 710065,China;Xi'an Key Laboratory of High Performance Oil and Gas Field Materials,Xi'an Shiyou University,Xi'an 710065,China)

机构地区:[1]西安石油大学材料科学与工程学院,西安710065 [2]西安石油大学西安市高性能油气田材料重点实验室,西安710065

出  处:《表面技术》2025年第7期151-161,共11页Surface Technology

基  金:国家自然科学基金(52474081);陕西省自然学科基金重点项目(2024CY-GJHX-39);西安市创新生态优化专项计划(24KGDW0039);西安石油大学研究生创新基金(YCS22213149)。

摘  要:目的针对316L不锈钢激光熔覆层存在的耐磨性不足问题,基于激光功率参数及硬质相Al_(2)O_(3)颗粒共同优化熔覆层性能,制备同时具有低稀释率、高耐磨性及高耐腐蚀性的316L熔覆层,为轨道交通、石油石化等领域提供高性能表面改性解决方案。方法通过调整热输入量及添加Al_(2)O_(3)陶瓷颗粒的方式制备复合熔覆层,采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对316L/Al_(2)O_(3)(质量分数为6%)复合熔覆层的微观结构及成分进行观察,使用显微硬度计评估其硬度,采用摩擦磨损试验仪测试其耐磨性能,应用电化学工作站测定其耐蚀性能。通过这些方法,系统分析不同激光功率条件下熔覆层的特性。结果相较于其他功率条件,在激光功率800 W条件下,316L/Al_(2)O_(3)(质量分数为6%)复合熔覆层展现出更佳的综合性能,且显著优于单一的316L熔覆层;该熔覆层内部无明显缺陷,稀释率约为9.6%,仅为316L熔覆层稀释率的50.8%;物相分析结果显示,复合熔覆层主要由铁素体、奥氏体和少量Al_(2)O_(3)组成;在800 W激光功率条件下,Al_(2)O_(3)颗粒的熔化程度最优;其硬度提升了100%以上,摩擦因数降低了25%,耐磨性提升了24倍左右;该熔覆层的电化学自腐蚀电位(Ecorr)为-340 mV,自腐蚀电流密度(Jcorr)为0.96μA/cm^(2),相较于单一316L熔覆层的自腐蚀电位高出151 mV,自腐蚀电流密度(6.64μA/cm^(2))降低了85.4%。结论通过添加Al_(2)O_(3)和调整热输入量,能够有效控制熔覆层的稀释率,显著提升熔覆层的耐磨耐蚀性能。The work aims to address the insufficient wear resistance of 316L stainless steel laser cladding layers by proposing a performance optimization strategy integrating both laser power parameters and hard phase Al_(2)O_(3)particle reinforcement.A low-dilution-rate,high-wear-resistance and corrosion-resistant cladding layer was successfully developed,offering advanced surface modification solutions for applications in rail transportation and petrochemical industries.Laser cladding technology was employed to fabricate a 316L/Al_(2)O_(3)composite layer on the surface of Q235 steel with 6%Al_(2)O_(3)powder at varying laser power levels.The addition of Al_(2)O_(3)effectively blocked part of the laser heat input,allowing control over the effect of thermal input on the dilution rate of the cladding layer while simultaneously enhancing its hardness and wear/corrosion resistance.Various characterization techniques were utilized,including a TESCAN CLARA ultra-high-resolution field emission scanning electron microscope,a Shimadzu XRD-6000 X-ray diffractometer,an HXD-1000TMC microhardness tester,an MMX-3G friction-wear testing machine,and a Versa STAT3 electrochemical workstation,to systematically analyze the microstructure,composition,microhardness,wear performance,and corrosion resistance of the cladding layer.As the laser power decreased from 1000 W to 800 W,internal defects in the 316L/6%Al_(2)O_(3)composite cladding layer gradually disappeared,with the thickness reducing from 1.3 mm to 0.7 mm.The cladding layer at 1000 W exhibited microcracks and contained a small number of pores.Below 900 W,no cracks were observed.However,some pores remained present at 800 W and the thickness of the 316L cladding layer was approximately 2.0 mm,with a certain number of pores aggregating at the internal interface.After addition of Al_(2)O_(3),the cladding thickness decreased by 65%,eliminating the pores.Under 800 W conditions,the inclusion of alumina resulted in no significant cracks or large pores,yielding a denser structure.The dilution r

关 键 词:激光熔覆 316L/Al_(2)O_(3)熔覆层 激光功率 稀释率 耐磨耐蚀性能 

分 类 号:TG174.4[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象