检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡荣耀 HU Rongyao(Guizhou Technological College of Machinery and Electricity,Qiannan,Guizhou 558000,China)
出 处:《自动化应用》2025年第7期262-264,共3页Automation Application
摘 要:提出了一种基于自编码器和遗传算法的混合智能机械制造流程优化系统。该系统利用自编码器对高维制造数据进行降维,然后使用遗传算法在压缩的特征空间中搜索最优的制造参数组合。这种方法既能有效处理复杂的非线性关系,又能在大规模搜索空间中快速找到近似最优解。实验结果表明,该系统在提高生产效率、降低能源消耗、减少废品率和提升产品质量方面均取得显著成效,为制造业的智能化和精细化管理提供了创新性的解决方案。This paper proposes a hybrid intelligent mechanical manufacturing process optimization system based on autoencoders and genetic algorithms.The system utilizes autoencoders to perform dimensionality reduction on high-dimensional manufacturing data,followed by the use of genetic algorithms to search for the optimal combination of manufacturing parameters within the compressed feature space.This approach is capable of effectively handling complex nonlinear relationships and quickly finding near-optimal solutions in large-scale search spaces.Experimental results demonstrate that the system has achieved significant results in improving production efficiency,reducing energy consumption,reducing scrap rates,and enhancing product quality,providing an innovative solution for the intelligent and refined management of the manufacturing industry.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15