检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹广华[1] 刘青云 CAO Guang-hua;LIU Qing-yun(School of Electrical and Information Engineering,Northeast Petroleum University,Daqing 163318 China)
机构地区:[1]东北石油大学电气信息工程学院,黑龙江大庆163318
出 处:《自动化技术与应用》2025年第4期143-146,182,共5页Techniques of Automation and Applications
摘 要:针对基本的快速搜索随机树(rapidly-exploring random tree,RRT)算法用于路径规划时存在的树扩展无导向性、密集障碍物区域规划效率低、局部区域节点聚集等问题,提出一种新的RRT改进算法。该算法采用增强的目标偏向策略,并引入可变的权值系数,提高随机树扩展的导向性和灵活性;同时采用局部节点过滤机制,过滤局部区域内聚集的节点;最后,使用节点直连策略对初始路径进行优化处理。仿真实验的结果表明,改进的RRT算法规划路径的速度更快且生成的路径质量更高,充分证明了改进算法的有效可行性。In view of the shortcomings that the basic Rapidly-exploring Random Tree(RRT)algorithm in path planning,such as tree expan-sion without orientation,in dense obstacle areas with the low planning efficiency,and the nodes clustering in local areas,a new improvement RRT algorithm is proposed.Firstly,an enhanced target bias strategy and variable weight coefficients are introduced by the algorithm to improve the orientation and flexibility of random tree expansion.Secondly,nodes clustered within a local area are filtered by using the local nodes filtering mechanism.Finally,the initial path is optimized by using the nodes direct connec-tion strategy.Simulation tests results show that the improved RRT algorithm has faster path planning speed and higher quality of the generated path,which has fully proved the effectiveness and feasibility of the improved algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222