检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘俊 高也 齐宇蓉 张斓曦 王欢 LIU Jun;GAO Ye;QI Yu-rong;ZHANG Lan-xi;WANG Huan(Aostr Information Technology Co.,Ltd.,Chengdu 610000 China)
机构地区:[1]四川中电启明星信息技术有限公司,四川成都610000
出 处:《自动化技术与应用》2025年第4期164-168,共5页Techniques of Automation and Applications
基 金:国家电网批准项目(SGIT0000XMJS2100641)。
摘 要:为了精准预测超额消纳量,关键在于平衡可再生能源电力市场因素与区域消纳关系,经过对历史数据的统计分析发现,现阶段消纳量、超额消纳量、预测量之间符合马尔科夫链模型,因此,基于马尔科夫链对其超额消纳量进行模型量化。具体量化步骤可分为四个部分,第一部分为构建基础马尔科夫链模型,确定数据优化主体结构;第二部分为可再生能源电力消纳量模型及其约束计算,确定优化条件;第三部分为消纳环境量模型构建,整理无关参量,整合超额消纳系数;最后一部分为超额消纳量预测模型构建,完成全局构建量化计算。通过对比测试表明,所得结果更接近实际结果,且整体稳定性满足实际场景下的长期应用。In order to accurately predict the excess consumption,the key lies in how to balance the relationship between renewable energy power market factors and regional consumption.Through the statistical analysis of historical data,it is found that the consump-tion,excess consumption and prediction at this stage are consistent with the Markov chain model.Therefore,based on the Mar-kov chain,the model quantification of its excess consumption can be divided into four parts,The first part is to build the basic Markov chain model and determine the main structure of data optimization.The second part is the renewable energy electricity consumption model and its constraint calculation to determine the optimization conditions.The third part is the construction of the consumption environmental quantity model,sorting out the irrelevant parameters and integrating the excess consumption coef-ficient.The last part is the construction of the prediction model of excess consumption,which completes the quantitative calcula-tion of the global construction.The comparison test shows that the results obtained are closer to the actual results,and the overall stability meets the long-term application under the actual scenario.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15