检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李云红[1] 魏小双 苏雪平 李丽敏[1] 田谷丰 郝特吉 冯准若 李仕博 LI Yunhong;WEI Xiaoshuang;SU Xueping;LI Limin;TIAN Gufeng;HAO Teji;FENG Zhunruo;LI Shibo(School of Electronics and Information,Xi’an Polytechnic University,Xi’an 710048,China)
机构地区:[1]西安工程大学电子信息学院,陕西西安710048
出 处:《西北大学学报(自然科学版)》2025年第2期277-285,共9页Journal of Northwest University(Natural Science Edition)
基 金:国家自然科学基金(62203344);陕西省自然科学基础研究重点项目(2022JZ-35);陕西高校青年创新团队。
摘 要:针对遥感图像小目标检测任务中,存在目标细节纹理信息模糊导致特征提取与融合不佳、小目标漏检等问题,提出了一种基于多尺度特征增强与交互融合的遥感小目标检测算法。首先,采用跨层多分支连接结构的多尺度特征增强(multiscale feature enhancement,MFE)模块,利用Split分流操作丰富和增强不同梯度获取的纹理特征信息,同时引入轻量级特征幻影模块Ghost进行通道线性变换,生成更多有效的特征细节信息流,以增强对图像中局部细节特征信息的关注;其次,构建特征交互融合(feature interaction fusion,FIF)模块,引入多分支串并行的卷积块与自适应机制的池化块,交互输入特征的通道语义信息和空间特征变换,捕获全局上下文信息,精确小目标的关键位置信息,加强特征信息之间的相关性,实现细粒度特征的多维度交互融合。使用公开的光学遥感数据集DIOR验证所提算法,改进后的网络模型平均精度值为87.6%,与NPMMR-Det、YOLOv7、YOLOv5等其他7种优秀算法相比均有提高,改进后的遥感图像小目标检测算法取得了更好的检测精度。In order to achieve remote sensing image small object detection task,there are problems such as poor feature extraction and fusion due to the blurring of target detail texture information,and leakage of small targets,a remote sensing objects detection algorithm that leverages multiscale feature enhancement and interactive fusion is proposed.Firstly,the multiscale feature enhancement(MFE)module with cross-layer and multi-branch connection structure is used to enrich and enhance the texture feature information obtained from different gradients by using the Split shunt operation,and at the same time,the lightweight feature phantom module Ghost is introduced to perform the linear transformation of the channel,generating more effective feature detail information flow to enhance attention to local detail feature information in the image.Secondly,the feature interaction fusion(FIF)module is constructed,which introduces a multi-branch serial parallel convolution block and an adaptive mechanism pooling block to interact with the channel semantic information and spatial transformation of the input features,capture the global context information,and accurately locate the key position of the small targets.information,enhance the correlation between feature information,and achieve multi-dimensional interactive fusion of fine-grained features.The proposed algorithm is validated with DIOR,which is a remote sensing dataset.The optimized network model achieves a mean accuracy precision of 87.6%,which is higher than the other seven excellent algorithms including NPMMR-Det,YOLOv7,and YOLOv5.The improved small target detection algorithm for remote sensing images achieves better detection accuracy.
关 键 词:遥感图像小目标检测 多尺度特征增强 Split分流 自适应机制 细节特征交互融合
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222