Exploring contextual priors for real-world image super-resolution  

在线阅读下载全文

作  者:Shixiang Wu Chao Dong Yu Qiao 

机构地区:[1]Guangdong–Hong Kong–Macao Joint Laboratory of Human–Machine Intelligence-Synergy Systems,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]Shanghai AI Laboratory,Shanghai,China.

出  处:《Computational Visual Media》2025年第1期159-177,共19页计算可视媒体(英文版)

摘  要:Real-world blind image super-resolution is a challenging problem due to the absence of target high resolution images for training.Inspired by the recent success of the single image generation based method SinGAN,we tackle this challenging problem with a refined model SR-SinGAN,which can learn to perform single real image super-resolution.Firstly,we empirically find that downsampled LR input with an appropriate size can improve the robustness of the generation model.Secondly,we introduce a global contextual prior to provide semantic information.This helps to remove distorted pixels and improve the output fidelity.Finally,we design an image gradient based local contextual prior to guide detail generation.It can alleviate generated artifacts in smooth areas while preserving rich details in densely textured regions(e.g.,hair,grass).To evaluate the effectiveness of these contextual priors,we conducted extensive experiments on both artificial and real images.Results show that these priors can stabilize training and preserve output fidelity,improving the generated image quality.We furthermore find that these single image generation based methods work better for images with repeated textures compared to general images.

关 键 词:unsupervised learning blind super-resolution image context image generation 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象