FCDFusion: A fast, low color deviation method for fusing visible and infrared image pairs  

在线阅读下载全文

作  者:Hesong Li Ying Fu 

机构地区:[1]School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China

出  处:《Computational Visual Media》2025年第1期195-211,共17页计算可视媒体(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant Nos.62171038,61827901,and 62088101.

摘  要:Visible and infrared image fusion(VIF)aims to combine information from visible and infrared images into a single fused image.Previous VIF methods usually employ a color space transformation to keep the hue and saturation from the original visible image.However,for fast VIF methods,this operation accounts for the majority of the calculation and is the bottleneck preventing faster processing.In this paper,we propose a fast fusion method,FCDFusion,with little color deviation.It preserves color information without color space transformations,by directly operating in RGB color space.It incorporates gamma correction at little extra cost,allowing color and contrast to be rapidly improved.We regard the fusion process as a scaling operation on 3D color vectors,greatly simplifying the calculations.A theoretical analysis and experiments show that our method can achieve satisfactory results in only 7 FLOPs per pixel.Compared to state-of-theart fast,color-preserving methods using HSV color space,our method provides higher contrast at only half of the computational cost.We further propose a new metric,color deviation,to measure the ability of a VIF method to preserve color.It is specifically designed for VIF tasks with color visible-light images,and overcomes deficiencies of existing VIF metrics used for this purpose.Our code is available at https://github.com/HeasonLee/FCDFusion.

关 键 词:infrared images visible and infrared image fusion(VIF) gamma correction real-time display color metrics color deviation 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象