检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯方三 Hou Fangsan(Human Resources and Social Security Bureau of Jimo District,Qingdao city,Qingdao 266200,China)
机构地区:[1]青岛市即墨区人力资源和社会保障局,山东青岛266200
出 处:《汽车知识》2025年第4期124-126,共3页AUTOMOTIVE KNOWLEDGE
摘 要:深度学习技术在图像处理、时序分析和多模态数据融合上具有优势,能够提高驾驶员行为识别与预测能力。本文探讨其关键方法:卷积神经网络提取视觉特征、循环神经网络及时序行为建模、多模态数据融合提升全面性。针对数据采集难、模型泛化不足、实时性要求高及隐私保护挑战,提出优化数据采集、轻量化模型、边缘计算、强化隐私保护等对策,为智能驾驶与道路安全管理提供支持。Deep learning technology can improve driver behavior recognition and prediction with its advantages in image processing, time-series analysis and multimodal data fusion. This paper discusses the key methods:convolutional neural network to extract visual features, recurrent neural network to model time-series behavior,and multimodal data fusion to enhance comprehensiveness. Aiming at the difficulty of data collection, insufficient model generalization, high real-time requirements and privacy protection challenges, countermeasures such as optimized data collection, lightweight models, edge computing, and enhanced privacy protection are proposed to provide support for intelligent driving and road safety management.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170