基于回归和M-K方法宣城市冬季气温时间序列分析  

Analysis of Winter Temperature Time Series in Xuancheng City Based on Regression and M-K Method

在线阅读下载全文

作  者:季菊香 周宗圣 杨小兵 康家明 邱丽芳 JI Juxiang;ZHOU Zongsheng;YANG Xiaobing;KANG Jiaming;QIU Lifang(Xuancheng Meteorological Bureau,Xuancheng Anhui 242000,China;Jingxian Meteorological Bureau,Jingxian Anhui 242500,China)

机构地区:[1]宣城市气象局,安徽宣城242000 [2]泾县气象局,安徽泾县242500

出  处:《新疆环境保护》2025年第1期66-72,共7页XINJIANG ENVIRONMENTAL PROTECTION

摘  要:为掌握宣城地区冬季气温的变化规律,采用回归分析和M-K非参数突变检验方法,对1962—2022年间该地区冬季气温的时间序列数据进行探讨。通过周期性剔除方法,利用Python软件生成了差分序列,进而完成序列的平稳性检验,利用M-K方法分析时间序列中气温变化趋势与突变点。研究结果表明:在99%的置信水平下,宣城地区的气温倾向率为2.23℃/6 a,这一结果揭示了该地区冬季气温整体上呈现显著的上升趋势。同时,气温变化还显著呈现出“升—降”的年代际变化特征,即在某些年代气温上升较快,而在另一些年代则相对平缓或出现下降。2010—2020年间,冬季气温的年际变率显著减小,这一变化表明宣城地区冬季气温的年际波动正在逐步趋于平稳状态。研究对预测未来气候变化趋势和制定相关应对气候变化策略具有重要意义。To understand change laws of winter temperature in Xuancheng area,regression analysis and M-K non-parametric mutation test methods were used to study time series data of winter temperature from 1962 to 2022.By using the periodic elimination method and Python software,a differential sequence was generated,and the stationarity test of the sequence was completed.The M-K method was used to analyze the temperature change trend and mutation points in the time series.The results showed that:The temperature tendency rate was 2.23℃/6a at a 99%confidence level,which revealed a significant upward trend in winter temperature as a whole;The temperature change also showed a significant inter decadal trend of"rise to fall",that was,in some years,the temperature rised rapidly,while in other years,it was relatively flat or showed a decline;During 2010 to 2020,the interannual variability of winter temperatures significantly decreased,which indicating that the interannual fluctuations of winter temperatures are gradually stabilizing.This study had great significance for predicting future climate change trends and formulating relevant response strategies.

关 键 词:回归分析 M-K方法 冬季气温 时间序列 

分 类 号:X823[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象