检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王首豪 余安南 张兆甫 葛强 孙建涛[1,2,3] 李瑞珍 WANG Shouhao;YU Annan;ZHANG Zhaofu;GE Qiang;SUN Jiantao;LI Ruizhen(Xi’an Aerospace Composites Research Institute,Xi’an 710025,China;Shaanxi Key Laboratory of Aerospace Composites,Xi’an 710025,China;National and Local Union Engineering Research Center of High-performance Carbon Fiber Manufacture and Application,Xi’an 710089,China;Hypervelocity Aerodynamics Institute of China Aerodynamics Research and Development Center,Mianyang 621000,China)
机构地区:[1]西安航天复合材料研究所,陕西西安710025 [2]陕西省航天复合材料重点实验室,陕西西安710025 [3]高性能碳纤维制造及应用国家地方联合工程研究中心,陕西西安710089 [4]中国空气动力研究与发展中心超高速空气动力研究所,四川绵阳621000
出 处:《火箭军工程大学学报》2025年第2期29-38,共10页Journal of Rocket Force University of Engineering
基 金:国家重点研发计划(2022YFB3403500)。
摘 要:以碳纤维纱穿刺叠层铺放的缎纹碳布为纤维预制体,采用化学气相渗透法(Chemical Vapor Infiltration,CVI)结合先驱体浸渍裂解法(Precursor Infiltration and Pyrolysis,PIP)制备了细编穿刺C/C-SiC复合材料,在(3.2±0.32)MW/m^(2)氧-乙炔焰作用下考核了C/C-SiC复合材料在碳布叠层和穿刺方向上的抗烧蚀性能,用扫描电子显微镜(Scanning Electron Microscope,SEM)对材料烧蚀表面及剖面的微观形貌进行表征与分析。结果表明:在60 s氧-乙炔焰考核后,C/C-SiC复合材料碳布叠层方向和穿刺方向的线烧蚀率分别为(1.67±0.23)μm/s和(2.39±0.22)μm/s,质量烧蚀率分别为(2.33±0.09)mg/s和(1.46±0.19)mg/s;当热流方向垂直于复合材料碳布叠层方向时,SiC基体氧化后生成的SiO2在碳纤维束及邻近基体表面形成较为连续的氧化膜,可有效阻挡高温热流对材料内部的进一步氧化烧蚀;当热流方向平行于复合材料碳布叠层方向时,穿刺纱中SiC分布较少,使得碳纤维在高温有氧环境下发生显著烧蚀,诱发穿刺纱端部出现明显氧化烧蚀凹坑;基体SiC分布方式和复合材料微结构特征是细编穿刺C/C-SiC复合材料在不同方向上表现出抗烧蚀性能差异的主要因素。Fine-weave pierced C/C-SiC composites were fabricated via a combined process of CVI(Chemical Vapor Infiltration)and PIP(Precursor Infiltration and Pyrolysis)by piercing stacked carbon cloths with carbon fiber yarns.The ablative resistance of C/C-SiC in carbon cloth stacking and piercing directions were evaluated under the(3.2±0.32)MW/m^(2) oxyacetylene ablation test.The ablative surface and cross-section of the composites were characterized by SEM(Scanning Electron Microscope).The results show that the linear ablative rates of the the C/C-SiC composites in the stacking and piercing directions are(1.67±0.23)μm/s and(2.39±0.22)μm/s,respectively;while the mass ablative rates are(2.33±0.09)mg/s and(1.46±0.19)mg/s,respectively.When the heat flux is perpendicular to the carbon cloth stacking direction of the composites,the SiO_(2) generated after the oxidation of the SiC matrix forms a relatively contin-uous oxide film on the surface of the carbon fiber bundle and the adjacent matrix.It can effectively block further oxidation and ablation of the material via a high-temperature heat flux.When the heat flux is parallel to the carbon cloth stacking direction of the composites,the less SiC distribution in the pierced yarn causes the carbon fiber to significantly ablate in the high-temperature oxidizing environment,resulting in obvious ablation pits at the end of the pierced carbon.The distribution mode of the SiC matrix and the microstructural characteristics of the composites are the main factors responsible for the differences in the ablation resistance of the fine-weave pierced C/C-SiC composites in different directions.
关 键 词:C/C-SIC复合材料 细编穿刺 碳布叠层方向 穿刺纱方向 抗烧蚀性能
分 类 号:V435[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171