ICA-Net:improving class activation for weakly supervised semantic segmentation via joint contrastive and simulation learning  

在线阅读下载全文

作  者:YE Zhuang LIU Ruyu SUN Bo 

机构地区:[1]School of Information Engineering,Chengdu Aviation Vocational and Technical College,Chengdu,610100,China [2]School of Computer Science and Engineering,Hangzhou Normal University,Hangzhou,311121,China [3]Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Quanzhou,362200,China

出  处:《Optoelectronics Letters》2025年第3期188-192,共5页光电子快报(英文版)

摘  要:In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can provide a more reliable approach in these situations.Current popular approaches mainly adopt the classification-based class activation maps(CAM)as initial pseudo labels to solve the task.

关 键 词:high resolution imaging supervised learning class activation maps joint contrastive simulation learning special spectral ranges weakly supervised learning OPTOELECTRONICS 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象