卫星导航接收机射频前端非线性失真建模综述  

Review of nonlinear distortion modeling in RF front end of satellite navigation receivers

在线阅读下载全文

作  者:刘嘉俊 鲁祖坤 肖伟 李宗楠 刘哲[1] LIU Jiajun;LU Zukun;XIAO Wei;LI Zongnan;LIU Zhe(College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China)

机构地区:[1]国防科技大学电子科学学院,湖南长沙410073

出  处:《系统工程与电子技术》2025年第3期938-950,共13页Systems Engineering and Electronics

基  金:国家自然科学基金(U20A0193);湖南省科技创新计划(2021RC3073)资助课题。

摘  要:卫星导航接收机射频(radio frequency,RF)前端的非线性效应威胁导航设备的正常工作,是卫星导航接收机抗干扰性能进一步提升的瓶颈。建立设备非线性效应的行为模型是解决非线性问题的重要方法。随着卫星导航接收机种类多样化、干扰环境复杂化,已有的非线性模型显现出对卫星导航接收机针对性研究不足、干扰环境下可靠性不足和建模方法不适配的问题。因此,综述主流的非线性效应行为级建模方法,评述各建模方法的优点与不足,介绍机器学习技术在非线性行为级建模的应用。最后,根据对已有建模技术特点的总结与面临的问题,对未来卫星导航接收机非线性建模技术的发展做出展望。The nonlinear effect of radio frequency(RF)front end of satellite navigation receiver threatens the normal operation of navigation equipment,which is the bottleneck to further improve the anti-interference performance of satellite navigation receiver.It is an important method to establish the behavior model of nonlinear effect of equipment.With the variety of satellite navigation receivers and the complexity of interference environment,the existing nonlinear models are shown the problems of insufficient targeted research on satellite navigation receivers,insufficient reliability under interference environment,and unsuitable modeling methods.Therefore,this paper summarizes the mainstream modeling methods of nonlinear effect behavior level,reviews the advantages and disadvantages of each modeling method,and introduces the application of machine learning technology in nonlinear behavior level modeling.Finally,based on the summary of the characteristics of existing modeling technologies and the problems faced,the future development of nonlinear behavior modeling technology of satellite navigation receiver is prospected.

关 键 词:卫星导航接收机 非线性失真 行为模型 机器学习 

分 类 号:TN965.5[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象