A self-powered triboelectric nano-sensor enabled digital twin for selfsustained machine monitoring in smart mine  

在线阅读下载全文

作  者:Jianping Jiang Chengliang Fan Hongyu Chen Fan Wu Xihui Feng Canjun Xiao Hongye Pan Xiaoping Wu Zutao Zhang 

机构地区:[1]School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China [2]Chengdu Technological University,Chengdu 611730,China [3]School of Information Science&Technology,Southwest Jiaotong University,Chengdu 611756,China [4]Yibin Research Institute,Southwest Jiaotong University,Yibin 644000,China [5]School of Design,Southwest Jiaotong University,Chengdu 611756,China

出  处:《Nano Research》2025年第4期453-468,共16页纳米研究(英文版)

基  金:granted by the National Natural Foundation of China(No.51975490);the Science and Technology Projects of Sichuan(Nos.23QYCX0280 and 2024JDRC0094);the Science and Technology Projects of Yibin(Nos.2021ZYCG017,2023SJXQYBKJJH005,SWJTU2021020001,and SWJTU2021020002).

摘  要:Effective monitoring of mining machinery is of great significance.Sensor nodes,which form the basis of the mine’s digital twin system,often face issues of poor sustainability.Therefore,this study introduces a self-powered triboelectric nano-sensor(STNS)enabled digital twin for selfsustained machine monitoring in smart mine.The STNS is designed with three mutually perpendicular sensor units to ensure responsiveness to vibrational energy sources from different directions.Compared to conventional spring-assisted triboelectric nanogenerator(TENG)structures,it exhibits higher frequency adaptability and bandwidth.For a 2 mm amplitude,the STNS responds to frequencies above 10 Hz,with a frequency linearity error rate of less than 0.05%.Utilizing deep learning,the STNS detects various vibrational parameters with an accuracy of±1 Hz for frequency and±1 mm for amplitude.A real-time monitoring system based on a deep learning model was constructed and successfully demonstrated for real-time monitoring of amplitude,frequency,and tilt angle.With STNS installed on vibration motor,real-time recognition of the five operating states of the vibration motor and real-time digital twin monitoring were realized.By large-scale distributed deployment of STNS devices,a self-sustained smart mine digital twin ecosystem can be constructed at a lower cost.

关 键 词:digital twin smart mine triboelectric nanosensor deep learning vibration monitoring 

分 类 号:TD67[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象