High-temperature shock-induced transformation of bulk copper into single-atom catalyst  

在线阅读下载全文

作  者:Renjie Fang Ji Yang Wei-Shen Song Na Yang Jie Ding Jian-Feng Li Feng Ru Fan 

机构地区:[1]State Key Laboratory of Physical Chemistry of Solid Surfaces,College of Chemistry and Chemical Engineering,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM),Xiamen University,Xiamen 361005,China [2]School of Materials and Energy,University of Electronic Science and Technology of China,Chengdu 611731,China [3]Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden(CFAED),Dresden University of Technology,Dresden 01062,Germany

出  处:《Nano Research》2025年第4期590-600,共11页纳米研究(英文版)

基  金:the National Natural Science Foundation of China(Nos.22222305,22402164,and 22021001);the Fundamental Research Funds for the Central Universities(No.20720220013).

摘  要:Transforming nanoscale and bulk metals into single atoms is crucial for the scalable production of single-atom catalysts(SACs),especially during pyrolysis.However,conventional equilibrium heating approaches often require prolonged operation to decompose metal aggregates,leading to tedious and time-consuming procedures for synthesizing SACs.In this study,we introduce high-temperature shock(HTS)strategy to enhance metal atomization,achieving the direct transformation of bulk copper foil into single atoms in just 0.5 s at 1700 K.The HTS-produced Cu catalyst demonstrates a high content of 0.54 wt.%,comparable to those achieved by commonly reported top-down strategies,indicating that the HTS method provides a compelling alternative for synthesizing Cu SACs from bulk Cu precursors.Structural analysis confirmed the synthesis of a Cu-N-C SAC with a Cu-N_(4) coordination environment.This Cu-N_(4) structure shows excellent catalytic performance for nitrite reduction to ammonia,achieving over 90% Faradaic efficiency across the entire working potential range and an ammonia production rate of up to 11.12 mg·cm^(-2)·h^(-1) at -1.2 V vs.reversible hydrogen electrode(RHE),surpassing other reported Cu-based electrocatalysts.Furthermore,ab initio molecular dynamics(AIMD)simulations reveal that transient high temperatures not only promote the formation of thermodynamically favorable Cu-N bonds but also prevent excessive sintering and aggregation of metal atoms.

关 键 词:single-atom catalyst bulk metal foil high-temperature shock rapid conversion ammonia electrosynthesis 

分 类 号:O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象