检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hongping GUO Xun WANG Zhijun SHEN
机构地区:[1]National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing,100088,China [2]Faculty of Mathematics,Baotou Teachers’College,Baotou,Inner Mongolia Autonomous Region,014030,China [3]School of Mathematical Sciences,Peking University,Beijing,100871,China [4]PKU-Changsha Institute for Computing and Digital Economy,Changsha,410205,China [5]Center for Applied Physics and Technology,Peking University,Beijing,100871,China
出 处:《Applied Mathematics and Mechanics(English Edition)》2025年第4期723-744,共22页应用数学和力学(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Nos.12471367 and12361076);the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Nos.NJZY19186,NJZY22036,and NJZY23003)。
摘 要:We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of planar flow fields where the transverse direction exhibits vanishing but non-zero velocity components,such as a disturbed onedimensional(1D)steady shock wave,we conduct a formal asymptotic analysis for the Euler system and associated numerical methods.This analysis aims to illustrate the discrepancies among various low-dissipative numerical algorithms.Furthermore,a numerical stability analysis of steady shock is undertaken to identify the key factors underlying shock-stable algorithms.To verify the stability mechanism,a consistent,low-dissipation,and shock-stable HLLC-type Riemann solver is presented.
关 键 词:Riemann solver numerical shock instability low Mach number HLLC
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239