A low Mach number asymptotic analysis of dissipation-reducing methods for curing shock instability  

在线阅读下载全文

作  者:Hongping GUO Xun WANG Zhijun SHEN 

机构地区:[1]National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing,100088,China [2]Faculty of Mathematics,Baotou Teachers’College,Baotou,Inner Mongolia Autonomous Region,014030,China [3]School of Mathematical Sciences,Peking University,Beijing,100871,China [4]PKU-Changsha Institute for Computing and Digital Economy,Changsha,410205,China [5]Center for Applied Physics and Technology,Peking University,Beijing,100871,China

出  处:《Applied Mathematics and Mechanics(English Edition)》2025年第4期723-744,共22页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.12471367 and12361076);the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Nos.NJZY19186,NJZY22036,and NJZY23003)。

摘  要:We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of planar flow fields where the transverse direction exhibits vanishing but non-zero velocity components,such as a disturbed onedimensional(1D)steady shock wave,we conduct a formal asymptotic analysis for the Euler system and associated numerical methods.This analysis aims to illustrate the discrepancies among various low-dissipative numerical algorithms.Furthermore,a numerical stability analysis of steady shock is undertaken to identify the key factors underlying shock-stable algorithms.To verify the stability mechanism,a consistent,low-dissipation,and shock-stable HLLC-type Riemann solver is presented.

关 键 词:Riemann solver numerical shock instability low Mach number HLLC 

分 类 号:O354[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象