检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翟社平 杨晴[1] 黄妍 杨锐 ZHAI Sheping;YANG Qing;HUANG Yan;YANG Rui(School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an Shaanxi 710121,China;Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing(Xi’an University of Posts and Telecommunications),Xi’an Shaanxi 710121,China)
机构地区:[1]西安邮电大学计算机学院,西安710721 [2]陕西省网络数据分析与智能处理重点实验室(西安邮电大学),西安710121
出 处:《计算机应用》2025年第4期1148-1156,共9页journal of Computer Applications
基 金:大学生创新创业训练计划国家级项目(202211664053);陕西省重点研发计划项目(2022GY-038);西安邮电大学研究生创新基金资助项目(CXJJYL2022052);陕西省教育厅科学研究计划项目(18JK0697);陕西省社会科学基金资助项目(2016N008);工业和信息化部通信软科学项目(2018-R-26);西安市社会科学规划基金资助项目(17X63)。
摘 要:已有的知识图谱补全(KGC)方法大多未充分挖掘三元组结构中的关系路径,仅考虑了图结构信息;同时现有模型在实体聚合过程中着重考虑邻域信息,对关系的学习相对简单。针对以上问题,提出融合有向关系和关系路径的图注意力模型DRPGAT。首先,将常规三元组转换为有向关系三元组,并引入注意力机制对不同的有向关系赋予不同的权重,从而完成实体信息的聚合,同时,建立关系路径模型,通过将关系位置嵌入路径信息区分不同位置之间的关系,并过滤无关路径得到有用的路径信息;其次,使用注意力机制对路径信息进行深度学习,以实现关系的聚合;最后,将实体与关系送入解码器,训练得到最终的补全结果。在2个真实数据集上进行链接预测实验,以验证所提模型的有效性。实验结果表明,在FB15k-237数据集上,相较于基线模型中的最优结果,DRPGAT的平均排名(MR)降低了13,平均倒数排名(MRR)、Hits@1、Hits@3、Hits@10分别提高1.9、1.2、2.3和1.6个百分点;在WN18RR数据集上,DRPGAT的MR降低了125,MRR、Hits@1、Hits@3、Hits@10分别提高了1.1、0.4、1.2和0.6个百分点,显示了所提模型的有效性。Most of the existing Knowledge Graph Completion(KGC)methods do not fully exploit the relational paths in the triple structure,and only consider the graph structure information;meanwhile,the existing models focus on considering the neighborhood information in the process of entity aggregation,and the learning of relations is relatively simple.To address the above problems,a graph attention model that integrates directed relations and relational paths was proposed,namely DRPGAT.Firstly,the regular triples were converted into directed relationship-based triples,and the attention mechanism was introduced to give different weights to different directed relationships,so as to realize the entity information aggregation.At the same time,the relational path model was established,and the relational positions were embedded into the path information to distinguish the relationships among different positions.And the irrelevant paths were filtered to obtain the useful path information.Secondly,the attention mechanism was used to carry out deep path information learning to realize the aggregation of relations.Finally,the entities and relations were fed into the decoder and trained to obtain the final completion results.Link prediction experiments were conducted on two real datasets to verify the effectiveness of the proposed model.Experimental results show that compared to the optimal results of the baseline models,on FB15k-237 dataset,DRPGAT has the Mean Rank(MR)reduced by 13,and the Mean Reciprocal Rank(MRR),Hits@1,Hits@3,and Hits@10 improved by 1.9,1.2,2.3,and 1.6 percentage points,respectively;on WN18RR dataset,DRPGAT has the MR reduced by 125,and the MRR,Hits@1,Hits@3,and Hits@10 improved by 1.1,0.4,1.2,and 0.6 percentage points,respectively,indicating the effectiveness of the proposed model.
关 键 词:知识图谱 知识图谱补全 关系路径推理 层次注意力 链接预测
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222