检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈马磊 史志才 高永彬 胡建洋 SHEN Malei;SHI Zhicai;GAO Yongbin;HU Jianyang(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Information Engineering,Shanghai Zhongqiao Vocational and Technical University,Shanghai 201514,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620 [2]上海中侨职业技术大学信息工程学院,上海201514
出 处:《计算机应用》2025年第4期1184-1189,共6页journal of Computer Applications
摘 要:作为自然语言处理领域的一项关键任务,事实验证要求能够从大量的纯文本中根据给定的声明检索相关的证据,并使用这些证据推理验证声明。以往的研究通常利用证据句子拼接或图结构表示证据之间的关系,而不能清晰地表示各证据之间的内在关联。因此,设计一种基于图谱和文本融合的协同推理网络模型CNGT(Co-attention Network with Graph and Text fusion),以通过构建证据知识图谱和证据句子进行语义融合。首先,根据证据句子构建证据知识图谱,并利用图变换编码器学习图谱表示;其次,利用BERT(Bidirectional Encoder Representations from Transformers)模型对声明和证据编码;最后,通过双层协同推理网络有效地融合推理图谱信息和文本特征。实验结果表明,相较于先进模型KGAT(KnowledgeGraphAttentionneTwork),所提模型在FEVER(FactExtractionand VERification)数据集上的标签准确率(LA)提高了0.84个百分点,FEVER得分提高了1.51个百分点。可见,所提模型更关注证据句子之间的关系,并且通过证据图谱展示出模型对证据句子关系的可解释性。As a critical task in the field of natural language processing,fact verification requires the ability to retrieve relevant evidences from large amount of plain text based on a given claim and use this evidence to reason and verify the claim.Previous studies usually use concatenation of evidence sentences or graph structure to represent the relationships among the evidences,but cannot represent the internal relevance among the evidences clearly.Therefore,a collaborative reasoning network model based on graph and text fusion—CNGT(Co-attention Network with Graph and Text fusion)was designed.The semantic fusion of evidence sentences was achieved by constructing evidence knowledge graph.Firstly,the evidential knowledge graph was constructed according to the evidence sentences,and the graph representation was learned by graph transformation encoder.Then,the BERT(Bidirectional Encoder Representations from Transformers)model was used to encode the claim and evidence sentences.Finally,the reasoning graph information and text features were fused effectively through the double-layer cooperative reasoning network.Experimental results show that the proposed model is better than the advanced model KGAT(Knowledge Graph Attention neTwork)on FEVER(Fact Extraction and VERification)dataset with Label Accuracy(LA)increased by 0.84 percentage points and FEVER score increased by 1.51 percentage points.It can be seen that the model pays more attention to the relationships among evidence sentences,demonstrating the interpretability of the model for the relationships among evidence sentences through the evidence graph.
关 键 词:事实验证 图谱 图变换编码器 语义融合 协同推理网络
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13