基于私有链的自动驾驶汽车速度咨询框架  

Private-blockchain-based Speed Advisory Framework for Autonomous Vehicles

在线阅读下载全文

作  者:谢义莎 訾玲玲 姚家鹏 XIE Yi-Sha;ZI Ling-Ling;YAO Jia-Peng(College of Computer and Information Science,Chongqing Normal University,Chongqing 401331,China)

机构地区:[1]重庆师范大学计算机与信息科学学院,重庆401331

出  处:《计算机系统应用》2025年第4期136-145,共10页Computer Systems & Applications

基  金:重庆市教育科学规划重点课题(K22YE205098);重庆师范大学博士科研启动基金(21XLB030,21XLB029)。

摘  要:在使用共识速度咨询系统(consensus speed advisory system,CSAS)为车队推荐速度时,常面临服务不可信以及车辆之间发送不正确数据的问题.此外,现有研究多集中于平坦道路的速度咨询场景,如果使用平坦道路的速度推荐,车辆在斜坡上可能会消耗更多的能量,无法实现最小能耗优化目标.为了解决上述问题,本文提出了一种基于区块链的斜坡共识速度咨询框架.该框架是将现有的共识速度咨询系统扩展至道路斜坡场景,以进一步解决了自动驾驶车辆在道路斜坡上的能耗最小的优化问题.同时,引入了私有区块链和加密原语,以确保服务可信以及车辆之间数据传输的隐私性.通过以太坊私有区块链和Truffle来实现该框架,实验结果表明,此框架能够在斜坡场景下提供可信的共识速度推荐,并有效地降低车辆能耗.When using a consensus speed advisory system(CSAS)to recommend speeds for vehicle fleets,challenges often arise regarding the untrustworthiness of the service and the transmission of incorrect data among vehicles.Additionally,existing research mainly focuses on speed advisory scenarios for flat roads.If the speed recommendations for flat roads are applied to sloped roads,vehicles may consume more energy,failing to achieve the optimization goal of minimum energy consumption.To address these issues,this study proposes a blockchain-based consensus speed advisory framework for sloped roads.This framework extends existing CSAS to sloped road scenarios,further solving the problem of optimizing the minimum energy consumption for autonomous vehicles on sloped roads.At the same time,private blockchains and cryptographic primitives are introduced to ensure the trustworthiness of the service and the privacy of data transmission among vehicles.By implementing this framework with Ethereum private blockchains and Truffle,experimental results show that the framework can provide trustworthy consensus speed recommendations in sloped road scenarios and effectively reduce vehicle energy consumption.

关 键 词:区块链 数据隐私 速度咨询 道路斜坡 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术] TP311.13

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象