检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶兴联 钟志韬 张楚城 苏寅彪 韩志刚 YE Xinglian;ZHONG Zhitao;ZHANG Chucheng;SU Yinbiao;Han Zhigang(Fujian LongKing Co.,Ltd.,Longyan 364000,Fujian China;School of Metallurgy,Northeastern University,Shenyang 110819,Liaoning China;Fujian Longking Nest Energy Storage Technology Co.,Ltd.,Longyan 364000,Fujian China)
机构地区:[1]福建龙净环保股份有限公司,福建龙岩364000 [2]东北大学冶金学院,辽宁沈阳110819 [3]福建龙净蜂巢储能科技有限公司,福建龙岩364000
出 处:《电力科技与环保》2025年第2期173-182,共10页Electric Power Technology and Environmental Protection
基 金:国家自然科学基金项目(12072071);福建龙净环保股份有限公司科技基金开发项目(202404-1)。
摘 要:【目的】锂离子储能电池在工作过程中会产生大量热量,温度过高会导致热失控,影响电池安全,而热管理系统是影响锂离子储能电池稳定性和效率的关键因素。【方法】本文基于数值模拟方法,从定量上对比讨论了并联式风冷和液冷电池模组的换热性能、流阻性能、流动换热综合性能及环境温度的影响等换热特性。【结果】研究表明:当考虑电池模组最高温度、最大温差时,风冷和液冷方式的选择会存在一个冷却介质进出口温差的分界点;液冷方式的整体温度均匀性优于风冷,各电芯间的温差仅为0.5℃,风冷方式则为6.1℃;液冷方式的换热性能优于风冷,而液冷方式的流阻性能劣于风冷。总体上,液冷方式的流动换热综合性能优于风冷,且性能优势随着冷却介质流量的增大而逐渐增强;在0~30℃环境温度变动下,液冷方式比风冷具有更强的环境温度变化适应能力,其换热性能受环境温度影响较小,最高温度涨幅仅为1.1℃。【结论】本文所述研究方法及结果可为相关研究提供参考,有利于储能冷却方式的进一步优化。[Objective]During the operation of lithium-ion energy storage batteries,a large amount of heat is generated,and high temperatures can lead to thermal runaway,affecting battery safety.The thermal management system is a key factor affecting the stability and efficiency of lithium-ion energy storage batteries.[Methods]Using numerical simulation methods,the heat transfer characteristics of parallel air-cooled and liquid-cooled battery modules are quantitatively compared and discussed,including heat transfer performance,flow resistance performance,overall flow heat transfer performance,and the influence of ambient temperature.[Results]The results show that when considering the maximum temperature and maximum temperature difference of the battery module,there is a threshold for the temperature difference between the inlet and outlet of the cooling medium in the selection between air-cooled and liquidcooled methods.The overall temperature uniformity of the liquid-cooled method is better than that of air-cooled,with a temperature difference of only 0.5℃between each cell,while air-cooled shows 6.1℃.The heat transfer performance of the liquid-cooled method is better than that of air-cooled,while the flow resistance performance of the liquid-cooled method is inferior to that of air-cooled.However,overall,the comprehensive flow heat transfer performance of the liquidcooled method is better than that of air-cooled,and the performance advantage gradually increases with the increase in cooling medium flow rate.In the environment temperature range of 0℃to 30℃,the liquid-cooled method has a stronger ability to adapt to environmental temperature changes than air-cooled,with its heat transfer performance being less affected by environmental temperature,resulting in a maximum temperature increase of only 1.1℃.[Conclusion]The research methods and results described in this paper can provide references for related research,which is conducive to the further optimization of energy storage cooling methods.
分 类 号:TK01[动力工程及工程热物理] TM911[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147