含腔炸药在冲击作用下孔洞坍缩和高温区形成研究  

Study on the hole collapse and high-temperature zone formation of explosive with cavity under impact

在线阅读下载全文

作  者:李帅 孟宝清 田保林 孙文俊[2] LI Shuai;MENG Baoqing;TIAN Baolin;SUN Wenjun(Graduate School,Chinese Academy of Engineering Physics,Beijing 100088,China;Institute of Applied Physics and Computational Mathematics,Beijing 100094,China;State Key Laboratory of High-Temperature Gas Dynamics,Institute of Mechanics,Chinese Academic of Sciences,Beijing 100190,China;School of Engineering Science,University of Chinese Academy of Sciences,Beijing 101408,China;School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China)

机构地区:[1]中国工程物理研究院研究生院,北京100088 [2]北京应用物理与计算数学研究所,北京100094 [3]中国科学院力学研究所高温气体动力学国家重点实验室,北京100190 [4]中国科学院大学工程科学学院,北京101408 [5]北京航空航天大学航空科学与工程学院,北京100191

出  处:《气体物理》2025年第2期1-15,共15页Physics of Gases

基  金:国家自然科学基金(12432012,12472262);中国科学院战略性先导科技专项(B类)(XDB1100000,XDB0620203)。

摘  要:激波冲击下含腔炸药颗粒群中热点的形成与点火现象引起了广泛的关注。然而,目前在介观尺度上的研究较为稀缺,大多数相关研究主要集中于落锤和跌落实验的加载方式。因此,亟待开展针对激波作用下介尺度炸药颗粒群的变形、温升模式及耗散传热机制等方面的研究。本研究建立了一种适用于跌落和激波冲击条件下炸药变形与温升问题的数学物理模型,该模型能够精确描述颗粒和流体的动力学与热力学过程。基于离散元法,该模型考虑了颗粒间的弹塑性接触过程,系统地考虑了颗粒间的弹塑性碰撞和剪切历史,准确解析颗粒的运动与碰撞行为。动量方程中考虑了颗粒与气相之间的曳力双向耦合作用,而能量方程涵盖了滑动摩擦耗散、滚动摩阻耗散、塑性耗散、颗粒间的热传递以及颗粒与流体之间的传热等效应。研究讨论了炸药颗粒尺寸对颗粒群跌落过程的影响,颗粒尺寸越小,跌落过程中的梯形升温区和对称高温带区域面积越大,且最终平均温度的稳定值越高。颗粒尺寸的不同致使颗粒群中颗粒数量不同,因此导致了颗粒间碰撞耗散行为的变化,从而造成颗粒温度的差异。并且,不同颗粒尺寸的炸药跌落过程中,滑动摩擦耗散和滚动摩阻耗散的演化差异在初期便已显现,而塑性耗散的演化差异则在跌落的中后期才逐渐发展。进一步,分析对比了跌落和激波冲击过程下塑性耗散这一关键耗散源项的演化规律。跌落过程中,塑性功的演变主要发生在高温区形成和孔洞坍缩阶段,这两个阶段包含较明显的颗粒之间剧烈的塑性碰撞。激波冲击过程中,塑性耗散主要发生在颗粒群孔洞变形的早期阶段,后期阶段塑性加载力不再做功,炸药颗粒的温度升高主要依赖于两相热传递。The formation of hotspots and ignition phenomena within a cavity-containing explosive particle cloud under impact has garnered significant attention.However,research at the mesoscopic scale remains limited,with most studies primarily focusing on drop hammer and free-fall testing methods.Therefore,there is an urgent need for investigations into the deformation,temperature rise patterns,dissipative mechanisms and heat transfer mechanisms of mesoscopic explosive particle clouds under impact.This study established a mathematical and physical model suitable for analyzing explosive deformation and temperature rise under both fall and shock wave impacts,accurately capturing the dynamics and thermodynamics of particles and fluids.Utilizing the discrete element method,the model accounted for the elastoplastic contact processes between particles,systematically considering their elastoplastic collisions and shear history,thereby accurately resolving particle motion and collision behavior.The momentum equation incorporated bidirectional coupling of drag forces between particles and the gas phase,while the energy equation addressed sliding friction dissipation,rolling resistance dissipation,plastic dissipation,heat transfer between particles,and thermal interactions between particles and the fluid.This study examined the influence of particle size on the fall process of explosive particle cloud.It is observed that smaller particle sizes result in a larger area of the trapezoidal temperature rise zone and a larger area of the symmetrical high-temperature region during the fall process,leading to a higher final average temperature.Variations in particle size result in different particle counts within the cloud,which in turn alters collision dissipation behaviors among particles,contributing to temperature discrepancies.Furthermore,the differences in the evolution of sliding friction and rolling resistance dissipation are apparent at an early stage during the fall,whereas the differences in plastic dissipation are only apparent

关 键 词:HMX炸药 离散元法 弹塑性模型 耗散机理 两相传热收稿日期:2025-01-20 修回日期:2025-03-02 

分 类 号:O359.2[理学—流体力学] V211[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象