检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘泉 张海涛 马洪伟 LIU Quan;ZHANG Haitao;MA Hongwei(Shandong Wanbo Technology Co.,Ltd.,Jinan 250000,China)
出 处:《计算机应用文摘》2025年第8期120-122,共3页
摘 要:随着人工智能技术的快速发展,传统故障诊断方法面临转型升级的机遇与挑战。机械装备智能化、网络化程度不断提高,产生的监测数据呈指数级增长,为基于人工智能的故障诊断提供了丰富的数据基础。人工智能算法在处理复杂非线性问题和大规模数据分析方面具有显著优势,将人工智能技术应用于机械故障诊断领域,能够实现诊断效率与准确性的双重提升。文章探讨了人工智能在机械故障诊断中的应用方法(包括基于知识图谱、深度学习、混合智能和强化学习的诊断技术),分析了各种方法的技术原理与应用案例。With the rapid development of artificial intelligence technology,traditional fault diagnosis methods are faced with opportunities and challenges of transformation and upgrading.The degree of intelligence and networking of machinery and equipment has been continuously improved,and the monitoring data generated has increased exponentially,providing a rich data basis for fault diagnosis based on artificial intelligence.Artificial intelligence algorithm has significant advantages in dealing with complex nonlinear problems and large-scale data analysis.The application of artificial intelligence technology in the field of mechanical fault diagnosis can achieve double improvement of diagnosis efficiency and accuracy.This paper discusses the application methods of artificial intelligence in mechanical fault diagnosis(including diagnosis techniques based on knowledge graph,deep learning,mixed intelligence and reinforcement learning),and analyzes the technical principles and application cases of various methods.
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239