基于人工智能的机械故障诊断研究  

Research on mechanical fault diagnosis based on artificial intelligence

在线阅读下载全文

作  者:刘泉 张海涛 马洪伟 LIU Quan;ZHANG Haitao;MA Hongwei(Shandong Wanbo Technology Co.,Ltd.,Jinan 250000,China)

机构地区:[1]山东万博科技股份有限公司,济南250000

出  处:《计算机应用文摘》2025年第8期120-122,共3页

摘  要:随着人工智能技术的快速发展,传统故障诊断方法面临转型升级的机遇与挑战。机械装备智能化、网络化程度不断提高,产生的监测数据呈指数级增长,为基于人工智能的故障诊断提供了丰富的数据基础。人工智能算法在处理复杂非线性问题和大规模数据分析方面具有显著优势,将人工智能技术应用于机械故障诊断领域,能够实现诊断效率与准确性的双重提升。文章探讨了人工智能在机械故障诊断中的应用方法(包括基于知识图谱、深度学习、混合智能和强化学习的诊断技术),分析了各种方法的技术原理与应用案例。With the rapid development of artificial intelligence technology,traditional fault diagnosis methods are faced with opportunities and challenges of transformation and upgrading.The degree of intelligence and networking of machinery and equipment has been continuously improved,and the monitoring data generated has increased exponentially,providing a rich data basis for fault diagnosis based on artificial intelligence.Artificial intelligence algorithm has significant advantages in dealing with complex nonlinear problems and large-scale data analysis.The application of artificial intelligence technology in the field of mechanical fault diagnosis can achieve double improvement of diagnosis efficiency and accuracy.This paper discusses the application methods of artificial intelligence in mechanical fault diagnosis(including diagnosis techniques based on knowledge graph,deep learning,mixed intelligence and reinforcement learning),and analyzes the technical principles and application cases of various methods.

关 键 词:人工智能 计算机技术 机械故障 诊断 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象