Geometric constraints via Page curves:insights from island rule and quantum focusing conjecture  

在线阅读下载全文

作  者:Ming-Hui Yu Xian-Hui Ge 余明辉;葛先辉

机构地区:[1]Department of Physics,Shanghai University,Shanghai 200444,China

出  处:《Chinese Physics C》2025年第4期259-272,共14页中国物理C(英文版)

基  金:Project partially supported by the National Science Foundation of China(12275166,12311540141)。

摘  要:explore the inverse problem tied to the Page curve phenomenon and island paradigm,we investigate the geometric conditions underpinning black hole evaporation,where information is preserved and islands manifest,giving rise to the characteristic Page curve.Focusing on a broad class of static spherical symmetry black hole metrics in asymptotically Minkowski or(anti-)de Sitter spacetimes,we derive a pivotal constraint,the second derivative of the blacken factor f"(rh)<6kA'(r_(h)/cG_(N)) for which the island exists,and reproduce the Page curve.Moreover,starting from the quantum focusing conjecture theory,we obtain another constraint on the blacken factor for which the theory can be satisfied:f"(rh)<6k^(2)r_(h)A'(r_(h))e^(2kr★(h)/cG_(N)f(b)).In poanreticular,by studying these two constraints,we find common properties.Specifically,we reveal that a universal criterion,manifested in the negativity of the second derivative of f(r),i.e.,f"(r)<O,in proximity to the event horizon where r~rh+O(G),ensures the emergence of Page curves and follows the quantum focusing conjecture in a manner transcending specific theoretical models.Finally,we argue that the negativity of the second derivative of the blacken factor f(r)near the event horizon strongly indicates negative heat capacity,which implies that black holes with a negative heat capacity must have islands and satisfy the quantum focusing conjecture.

关 键 词:black holes black hole information loss page curve 

分 类 号:P145.6[天文地球—天体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象