检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李敬如 李红军 马良 姜世公 穆朝絮 司晨怡 LI Jingru;LI Hongjun;MA Liang;JIANG Shigong;MU Chaoxu;SI Chenyi(State Grid Economic and Technological Research Institute Co.,Ltd.,Beijing 102209,China;School of Electrical Automation and Information Engineering,Tianjin University,Tianjin 300072,China)
机构地区:[1]国网经济技术研究院有限公司,北京市102209 [2]天津大学电气自动化与信息工程学院,天津市300072
出 处:《电力建设》2025年第4期1-15,共15页Electric Power Construction
基 金:国家电网公司科技项目(5400-202456175A-1-1-ZN)。
摘 要:【目的】随着分布式电源、新型储能、充电设施等规模化接入,配电网的物理形态、数字形态和商业形态发生深刻变革。传统基于人工决策的规划方法难以解决要素海量、结构复杂、设备繁多的配电网组网优化问题,人工智能技术为突破配电网规划技术瓶颈提供了可行的解决路径。【方法】在此背景下,文章对配电网规划流程与新形势下源荷多时空精准预测、电力电量概率平衡、源网荷储规划协同、数字化智能化赋能赋效等方面面临的挑战进行分析,并围绕知识图谱构建、源荷场景生成、电力电量平衡、规划需求推演以及智能组网规划等关键环节,详细阐述了基于人工智能的配电网规划研究现状。【结果】对基于人工智能的配电网规划技术所存在的非/半结构化数据处理难、场景适用单一、需求推演精度低、缺乏可解释性以及规划方案求解维度高等问题进行了总结与分析,并给出了基于图学习、迁移学习、多模态融合、增强可解释性以及人机混合智能增强等配电网规划技术演进方向的展望。【结论】相比于传统配电网规划方法,基于人工智能的配电网规划具有泛化性强、适用性强、扩展性强等明显优势,但也存在模型精度不高、生成方案质量差等一些关键性问题。在未来的工作中,将继续深入研究基于人工智能的配电网规划方法,解决其涉及的关键性问题,为新型电力系统下配电网规划技术体系发展和数智化转型提供参考和借鉴。[Objective]With large-scale access to distributed power sources,new energy storage,charging facilities,etc.,the physical,digital,and commercial forms of distribution networks have undergone profound changes.The traditional planning method based on manual decision-making hinders distribution network optimization due to massive factors,complex structures,and numerous pieces of equipment.Artificial intelligence technology provides a feasible solution for overcoming the technical bottlenecks of distribution network planning.[Methods]In this context,this study analyzes the challenges faced by the distribution network planning process under new circumstances,including the precise spatiotemporal prediction of source-load,probabilistic balance of power and energy,coordinated planning of source-grid-load-storage,and empowerment of digitalization and intelligence.It elaborates on the current research status of artificial intelligence-based distribution network planning,focusing on key aspects such as knowledge graph construction,source-load scenario generation,power-energy balance,planning demand reduction,and intelligent network planning.[Results]This study summarizes and analyzes the issues in artificial intelligence-based distribution network planning technologies,including difficulties in processing unstructured and semi-structured data,limited scenario applicability,low accuracy in demand deduction,lack of interpretability,and high-dimensional solution spaces for planning schemes.It proposes potential solutions in technical research,such as graph learning,transfer learning,multimodal fusion,enhanced interpretability,and human-machine hybrid intelligence enhancement.[Conclusions]Compared with traditional distribution network planning methods,artificial intelligence-based distribution network planning demonstrates significant advantages of strong generalization,applicability,and scalability.However,it still faces critical issues,such as insufficient model accuracy and poor quality of generated solutions.In future work,w
关 键 词:人工智能 配电网规划 分布式电源 研究现状 技术展望
分 类 号:TM72[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239