混合网络攻击下网络化系统集员滤波算法设计  

Set-Membership Filtering Algorithm Design of Networked System Under Hybrid Cyber Attacks

在线阅读下载全文

作  者:祝超群[1,2,3] 朱晓岚 张磐 ZHU Chaoqun;ZHU Xiaolan;ZHANG Pan(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050;Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou 730050;National Demonstration Center for Experimental Electrical and Control Engineering Education,Lanzhou University of Technology,Lanzhou 730050)

机构地区:[1]兰州理工大学电气工程与信息工程学院,兰州730050 [2]甘肃省工业过程先进控制重点实验室,兰州730050 [3]兰州理工大学电气与控制工程国家级实验教学示范中心,兰州730050

出  处:《系统科学与数学》2025年第3期683-695,共13页Journal of Systems Science and Mathematical Sciences

基  金:国家自然科学基金(62363024,62263019)资助课题.

摘  要:针对混合攻击环境下的离散时变网络化系统,研究了系统集员滤波算法的设计问题.首先,考虑到系统同时受到DoS攻击和欺骗攻击,将欺骗攻击建模为未知有界的信号,并采用两组服从Bernoulli分布的随机变量来描述网络攻击的发生概率;其次,设计集员滤波算法使得系统状态估计误差满足椭球约束条件,通过求解两个递推差分方程得出集员滤波增益矩阵及相应的椭球约束域,并分析了时变椭球域的有界性问题;最后,通过数值算例验证了所提出滤波算法的有效性和优越性.The design of set-membership filtering algorithms is investigated for discrete time-varying networked systems under hybrid attack environment.Firstly,considering the effects of DoS attacks and deception attacks,the deception attack is modeled as an unknown bounded signal,and two sets of random variables following the Bernoulli distribution are utilized to describe the occurrence probability of the cyber-attacks;Secondly,the set-membership filtering algorithm is designed to ensure that the state estimation error satisfies ellipsoidal constraints,the filtering gain matrix and corresponding ellipsoidal constraint domain are derived by solving two recursive difference equations,and the boundedness problem of time-varying ellipsoidal domains is analyzed;Finally,the effectiveness and superiority of the proposed algorithm are verified by a numerical example.

关 键 词:网络化控制系统 混合网络攻击 集员滤波 有界性分析 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象