检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马记 许伟强 王荣昌 徐良友 陈世彪 胡勇[3] MA Ji;XU Weiqiang;WANG Rongchang;XU Liangyou;CHEN Shibiao;HU Yong(Huadian Laizhou Power Generation Co.,Ltd.,Laizhou 261400,China;Huadian Electric Power Research Institute Co.,Ltd.,Hangzhou 310030,China;School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华电莱州发电有限公司,山东莱州261400 [2]华电电力科学研究院有限公司,杭州310030 [3]华北电力大学控制与计算机工程学院,北京102206
出 处:《计算机测量与控制》2025年第4期17-23,122,共8页Computer Measurement &Control
摘 要:磨煤机系统的监测与诊断对电厂的安全运行至关重要;由于真实故障数据的稀缺性以及故障与正常数据之间的不平衡,传统数据驱动的故障诊断方法在故障识别上表现不佳,有时甚至会产生误判;为了高效地识别磨煤机在不同工况下的典型故障,设计了一种结合了卷积块注意力模块的GRU-TCN融合算法,用于建立磨的故障识别模型,新算法不仅能提升分类准确性,还能实现故障的提前预警;首先,通过调整磨煤机故障生成模型的关键参数,模拟断煤、堵煤和自燃3种典型故障,获取大量不同工况下的故障样本数据;然后,采用新分类算法建立基于典型样本的故障预警模型,旨在提高故障识别的准确性,在故障初期提醒操作人员进行干预,从而避免磨煤机故障进一步扩大。The monitoring and diagnosis of coal mill systems are critical for the safe operation of power plants.Due to the scarcity of real fault data and the imbalance between faulty and normal data,traditional data-driven fault diagnosis methods perform poorly in fault identification and sometimes even make misjudgments.In order to efficiently identify typical faults of coal mills under different operating conditions,this paper designs a gate recurrent unit and temporal convolutional network(GRU-TCN)fusion algorithm with convolutional block attention module,which is used to build a mill fault identification model.The new algorithm not only improves the classification accuracy,but also realizes the early warning of faults.Firstly,by adjusting the key parameters of the coal mill fault generation model,three typical faults of coal breakage,coal plugging and spontaneous combustion are simulated to obtain a large amount of fault sample data under different working conditions.Then,the new classification algorithm is used to establish the fault warning model based on typical samples,the purpose is to improve the accuracy of fault identification and reminder operators to intervene at the early stage of faults,thereby avoiding further expansion of coal mill faults.
关 键 词:磨煤机故障诊断 典型故障样本 注意力机制 门控循环单元(GRU) 时间卷积网络(TCN)
分 类 号:TM621[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116