基于遗传神经网络的通信网络安全威胁智能评估方法  

Intelligent Evaluation Method for Communication Network Security Threat Based on Genetic Neural Network

在线阅读下载全文

作  者:张立达 郝明 高天昊 ZHANG Lida;HAO Ming;GAO Tianhao(The 54 th Research Institute of CECT,Shijiazhuang 050081,China;Qiushi College,Dalian University of Technology,Dalian 116024,China)

机构地区:[1]中国电子科技集团公司第54研究所,石家庄050081 [2]大连理工大学求实书院,辽宁大连116024

出  处:《计算机测量与控制》2025年第4期306-312,共7页Computer Measurement &Control

摘  要:针对当前的通信网络安全威胁评估方法面临着数据量大、威胁类型多样、环境动态变化等挑战,基于规则和简单统计分析的传统评估方法难以满足实时性、准确性需求的局限性,提出了一种基于遗传神经网络的通信网络安全威胁智能评估方法;通过构建包含通信网络受攻击程度、受攻击后的通信质量和通信容量等方面的通信网络安全评估指标体系,并采用非数值型指标量化、正向化处理、无量纲标准化对评估指标进行规范化处理,设计了基于遗传算法优化的神经网络评估模型,实现对通信网络安全威胁的准确、智能评估;通过TOPSIS方法生成的数据集对所提出的评估方法进行了实验验证,结果显示评估准确率达到了92%,证明了该评估方法的有效性。Facing the challenges of large amounts of data,diverse threat types,and dynamic environmental changes in current communication network security threat assessment methods,traditional assessment methods based on rules and simple statistical analysis are difficult to meet demands for real-time and accuracy.To address these limitations,this paper proposes an intelligent assessment method for communication network security threats based on genetic neural networks.Construct a communication network security assessment index system,including the degree of attack on the communication network,the communication quality and capacity after the attack.Non-numerical indicator quantification,positive processing,and dimensionless standardization are used to standardize assessment indicators,a neural network assessment model optimized by genetic algorithms is designed to achieve accurate and intelligent assessment of communication network security threats.The proposed assessment method is validated on the dataset generated by the TOPSIS method,and the results show an assessment accuracy rate of 92%,proving the effectiveness of the assessment method.

关 键 词:通信网络 网络安全 威胁评估 

分 类 号:TP271[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象