All solid-solution S-scheme heterojunction with adjustable internal electric field for highly efficient photocatalytic activity  

构建内建电场可调的全固溶体S型异质结以实现高效光催化活性

在线阅读下载全文

作  者:Shiya Yue Rong Li Zhengrong Wei Yun Gao Karen Wilson Xuxing Chen 岳诗雅;李荣;魏政荣;高云;Karen Wilson;陈绪兴(湖北大学材料科学与工程学院,功能材料绿色制备与应用教育部重点实验室,湖北武汉430062;湖北大学智能制造学院,湖北武汉430062;格里菲斯大学环境与科学学院催化与清洁能源研究中心,昆士兰布里斯班,澳大利亚)

机构地区:[1]Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials,School of Materials Science&Engineering,Hubei University,Wuhan 430062,Hubei,China [2]School of Intelligent Manufacturing,Hubei University,Wuhan 430062,Hubei,China [3]Centre for Catalysis and Clean Energy,School of Environment and Science,Griffith University,Brisbane,Queensland,4222,Australia

出  处:《Chinese Journal of Catalysis》2025年第4期353-362,共10页催化学报(英文)

基  金:国家自然科学基金(21801071,21902046);高等学校学科创新引智计划(D18025);湖北省自然科学基金(2018CFB171);湖北省教育厅(D20221001);中国科学院福建物质结构研究所结构化学国家重点实验室开放基金;湖北工程学院特色果蔬质量控制湖北省教育厅重点实验室开放资金(2023K003).

摘  要:Developing an efficient photocatalyst is the key to realize the practical application of photocatalysis.The S-scheme heterojunction has great potential in photocatalysis due to its unique charge-carrier migration pathway,effective light absorption and high redox capacity.However,further enhancing the built-in electric field of the S-scheme,accelerating carrier separation,and achieving higher photocatalytic performance remain unresolved challenges.Herein,based on the continuously adjustable band structure of continuous solid-solution,a novel 0D/2D all solid-solution S-scheme heterojunction with adjustable internal electric field was designed and fabricated by employing a solid-solution of ZnxCd_(1–x)S and Bi_(2)MoyW_(1–y)O_(6)respectively as reduction and oxidation semiconductors.The synergistic optimization of effective light absorption,fast photogenerated carrier separation,and high redox potential leads can be tuned to promote photocatalytic activity.Under visible light,the S-scheme system constructed by Zn_(0.4)Cd_(0.6)S quantum dot(QDs)and Bi_(2)Mo_(0.2)W_(0.8)O_(6)monolayer exhibits a high rate for photocatalytic degradation C_(2)H_(4)(150.6×10^(–3)min^(–1)),which is 16.5 times higher than that of pure Zn_(0.4)Cd_(0.6)S(9.1×10^(–3)min^(–1))and 53.8 times higher than pure Bi_(2)Mo_(0.2)W_(0.8)O_(6)(2.8×10^(–3)min^(–1)).Due to the unique charge-carrier migration pathway,photo-corrosion of Zn_(x)Cd_(1–x)S is further inhibited simultaneously.In-situ irradiation X-ray photoelectron spectroscopy,photoluminescence spectroscopy,time-resolved photoluminescence,transient absorption spectroscopy and electron paramagnetic resonance provide compelling evidence for interfacial charge transfer via S-scheme pathways,while in-situ diffuse reflectance infrared Fourier transform spectroscopy identifies the reaction pathway for C_(2)H_(4)degradation.This novel S-scheme photocatalysts demonstrates excellent performance and potential for the practical application of the fruits and vegetables preservation at r自1972年发现“本多-藤岛效应”以来,光催化技术在能源与环境领域展出了良好的应用前景,如何开发一种高效的光催化剂是实现光催化应用的关键.S型异质结因其独特的光生载流子迁移路径、有效的光吸收能力和较高的氧化还原能力,展现出良好的应用潜力.尽管S型异质结实现了光吸收和氧化还原能力的协同优化.然而,如何进一步调控S型异质结的内建电场,以实现光吸收、载流子分离和氧化还原能力三者的协同优化,实现更高的光催化性能仍然是一个巨大的挑战.基于连续固溶体的能带结构连续可调的特性,本文以Zn_(x)Cd_(1–x)S和Bi_(2)MoyW_(1–y)O_(6)固溶体分别作为还原和氧化性半导体,成功设计并构建了具有内建电场可调的0D/2D全固溶体S型异质结,该全固溶体S型异质结实现了有效光吸收、快速光生载流子分离和高氧化还原能力的协同优化,从而展现出优异的光催化降解乙烯的性能.首先,采用两步水热法制备了不同比例的Zn_(0.4)Cd_(0.6)S-Bi_(2)Mo_(0.2)W_(0.8)O_(6)0D/2D全固溶体S型异质结,并通过X-射线粉末衍射、紫外-可见光漫反射谱、傅里叶变换红外光谱和Raman光谱等表征对其结构进行了分析.在可见光下,10%的Zn_(0.4)Cd_(0.6)S量子点与Bi_(2)Mo_(0.2)W_(0.8)O_(6)单层复合构建的S型异质结光催化效率最高,其降解C2H4的速率为150.60×10^(–3)min^(–1),是纯Zn_(0.4)Cd_(0.6)S(9.10×10^(–3)min^(–1))的16.5倍,纯Bi_(2)Mo_(0.2)W_(0.8)O_(6)(2.80×10^(–3)min^(–1))的53.8倍.实验结果表明,Zn_(x)Cd_(1–x)S的光腐蚀得到了有效抑制,这得益于该异质结独特的光生载流子S型迁移途径.本文通过原位光照X-射线光电子能谱、光致发光光谱、时间分辨光致发光光谱、瞬态吸收光谱和电子顺磁共振波谱表征进一步证实了光生载流子的S型转移路径.原位漫反射傅里叶变换红外光谱进一步揭示了C_(2)H_(4)降解的反应途径和机�

关 键 词:Photocatalysis S-scheme SOLID-SOLUTION Internal electric field Ethylene 

分 类 号:O643.3[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象