检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋晓武 张自强 朱国庆[3] 王永生 Jiang Xiaowu;Zhang Ziqiang;Zhu Guoqing;Wang Yongsheng(Ningbo Port Fire Protection Technology Service Co.,Ltd.,Ningbo Zhejiang 315200,China;Ningbo Fire and Rescue Division,Ningbo Zhejiang 315800,China;School of Safety Engineering,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;Jiangsu Honghu Safety Technology Co.,Ltd.,Xuzhou Jiangsu 221100,China)
机构地区:[1]宁波港消防技术服务有限公司,浙江宁波315200 [2]宁波市消防救援支队,浙江宁波315800 [3]中国矿业大学安全工程学院,江苏徐州221116 [4]江苏鸿鹄安全科技有限公司,江苏徐州221100
出 处:《消防科学与技术》2025年第4期465-470,共6页Fire Science and Technology
摘 要:为研究空气间隙对固体燃料阵列热量传递的影响,建立了缩尺寸试验平台,设计了一系列不同空气间隙的固体燃料阵列,以分析总热通量、点火时间以及火焰高度等参数的变化规律。研究发现,随着空气间隙的增加,燃料阵列释放的热通量先增大后减小。当空气间隙不超过8 cm,即燃料覆盖率不超过50%时,燃料阵列释放的热通量显著高于无空气间隙的工况;当空气间隙超过8 cm,即燃料覆盖率高于50%时,热通量呈现低于无空气间隙工况的水平。通过引入点燃滞后时间概念,定量描述了空气间隙对点燃滞后时间的影响,即点燃滞后时间随着空气间隙的增加而增大,且呈良好的指数关系,并基于此建立了适用于不同空气间隙条件下的固体燃料阵列接收热流模型。同时,笔者定量分析了空气间隙对燃料阵列释放热流的影响,空气间隙通过改变火焰高度进而影响燃料阵列释放的热流。随着空气间隙的增加,火焰高度先增加后减小。当空气间隙不超过10 cm,燃料覆盖率不超过55.6%时,燃料阵列的火焰高于无空气间隙的工况,而空气间隙超过10 cm,燃料覆盖率高于55.6%时,火焰则更低。固体燃料阵列释放的热通量随着相对火焰高度的增加而降低,当相对火焰高度小于1时,热通量急剧下降,大于1时,热通量开始缓慢下降,且固体燃料阵列释放的热通量与相对火焰高度呈幂次函数关系,并基于此提出了适用于不同空气间隙条件下的固体燃料阵列释放热流模型。In order to study the impact of air gap on the heat transfer of solid fuel arrays,a reduced-scaled experimental platform was established,and a series of solid fuel arrays with different air gaps were designed to analyze the variation of parameters such as total heat flux,ignition time and flame height.It was found that with the increase of air gap,the heat flux released from the fuel array shows a trend of increasing and then decreasing,and when the air gap is no more than 8 cm(when the fuel coverage is less than or equal to 50%),the heat flux released by the fuel arrays is higher than that of the condition without air gap.When the air gap exceeds 8 cm,with a fuel coverage rate above 50%,the heat flux is lower than that of the condition without air gap.By introducing the concept of ignition delay time,the impact of air gaps on ignition delay time is quantitatively de‐scribed.The ignition delay time increases with the increase of air gap and shows a good exponential relation‐ship,based on which a model for the heat flux received by solid fuel arrays under different air gaps was estab‐lished.This paper also quantitatively analyzes the effect of air gaps on the heat flux released by the fuel arrays,showing that air gaps influence the released heat flux by altering flame height.As the air gap increases,the flame height first increases and then decreases.When the air gap is no more than 10 cm,with a fuel coverage rate not exceeding 55.6%,the flame height of the fuel arrays is higher than that in the condition without an air gap.However,when the air gap exceeds 10 cm,with a fuel coverage rate above 55.6%,the flame height de‐creases.The heat flux released by solid fuel arrays decreases with the increase of relative flame height,which decreases sharply when the relative flame height is less than 1,and starts to decrease slowly when the relative flame height is greater than 1,and the heat flux is related to the relative flame height in a power function,and based on this,a model for the released heat flux under dif
分 类 号:X913.4[环境科学与工程—安全科学] TK121[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7