检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵鹏程[1] 秦浩东 张颖 张珂 Zhao Pengcheng;Qin Haodong;Zhang Ying;Zhang Ke(School of Safety Science and Engineering,Changzhou University,Changzhou Jiangsu 213164,China;CCTEG Chongqing Research Institute,Chongqing 400039,China)
机构地区:[1]常州大学安全科学与工程学院,江苏常州213164 [2]中煤科工集团重庆研究院有限公司,重庆400039
出 处:《消防科学与技术》2025年第4期541-547,共7页Fire Science and Technology
基 金:中国石油天然气股份有限公司-常州大学创新联合体科技合作项目(KYZ22020129)。
摘 要:安全防护装备是保障作业人员安全的重要设施,为提高人员安全装备识别精度,解决施工现场动火作业智能安全管理问题,提出一种深度学习下动火作业人员安全装备检测方法。通过在YOLOv5网络中引入CBAM注意力机制和SPD-Conv模块,优化主干特征提取网络对目标的特征提取能力,建立数据集训练网络以构建动火作业人员安全装备智能检测模型。结果表明,改进后的YOLOv5网络模型对4类安全装备的平均识别精度为92.9%,较原始网络提升了8.8%。该方法对动火作业现场人员安全装备检测具有较高的识别精度,能有效促进施工现场的智能安全管理。Safety protection equipment is an important facility to protect the safety of operators.In order to improve the precision of personnel safety equipment identification and solve the problem of intelligent safety management of fire operations on construction sites.A detection method of safety equipment for personnel in fire operation under deep learning was proposed in this paper.The YOLOv5 network was enhanced by incorporating the CBAM attention mechanism and the SPD Conv module.The feature extraction ability of the network was improved by optimization.A dataset training network was established to develop an intelligent detection model for identifying safety equipment of pyrotechnic operators.The results show that the improved YOLOv5 network model has an average recognition accuracy of 92.9%for the four types of safety equipment,which is an 8.8%improvement over the original network.The method exhibits high recognition accuracy in detecting safety equipment at fire operation sites.It can effectively promote intelligent safety management on construction sites.
分 类 号:X947[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33